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Instability versus nonlinearity in certain nonautonomous oscillators: A critical dynamical
transition driven by the initial energy
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The equation of motiorﬁ+92(t)q+a|q\7’2q=0 (y>2) for the real coordinatg(t) is studied, as an
example of the interplay between nonlinearity and instability. Two contrasting mechanisms determine the
behavior ofq(t), when the time-varying frequend(t) does produce exponential instability in the linear
equationq;, + Q3(t)g;,=0. At low energy, the exponential instability is the dominant effect, while at high
energy the bounding effect of the autonomous nonlinear term prevails. Starting from low initial energies, the
result of this competition is a time-varying energy characterized by quasiperiodic peaks, with an average
recurrence timél ... A closed critical curveS, exists in the initial phase space, whose crossing corresponds
to a divergence of the recurrence tiMg.,.. The divergence of ., has a universal character, expressed by
a critical exponena=1. The critical curveS, is the initial locus of the solutions that vanish asymptotically.

A close relationship exists between this dynamical transition and the transition from mobile to self-trapped
polarons in one spatial dimension. The application to a number of physical problems is addressed, with special
attention to the Fermi-Pasta-Ulam problem and to transitions to chaos.
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I. INTRODUCTION yields a bounded solution, even farbitrarily small values
of the positive parameter. Therefore, the nonlinear term in
In a recent papefl] the authors addressed the interplaythe equation of motion

between nonautonomous and nonlinear effectsgtameral-
ized classical oscillators, i.e., systems described by one real .
degree of freedong(t), that move back and forth about a q+Q2(t)g+alg|”?q=0 €)
stable (and uniqué equilibrium position. The main result
was as follows: for a wide class of generalized oscillators, . .
with a time-dependent Hamiltonian, the presence ofan cannot _be_ treated as a perturbation, Wh_enever El conditions
tonomousterm, diverging more than quadratically with the are satisfied by the linear part. In particular, the bounded

coordinate, is a sufficient condition for the boundedness ofdnctionq(t;«) will approach an exponentially unstable so-
all solutions. This result is especially relevant if one consid-Ution nonuniformlyin time, whena tends to zero. Equation
ers the Hamiltonian (3) is actually the simplest possible case for studying the

interplay between El and nonlinearity in a nonperturbative

way.
p2+02(t)qg? In many physical cases, E(l) can be regarded as a zero-
L D order approximation, while Eq2) represents a natural gen-

eralization, including higher-order terms. The example of an
elastic horizontal bar, stressed by longitudinal time-varying
of a linear oscillator with a time-fluctuating square frequencyforces [4], was used in Ref[1] as a physical application
Q2(t) [2]. In case(1), there exist conditions aéxponential concerned with safety-control systems. Here we recall that
instability (El), such thagy(t) has arexponentially diverging the interplay between El and nonlinearity can address a num-
envelope exp(t), with rate >0 [1,3-5. However, under ber of further applications, like thequeezingof photons
the same conditions, the Hamiltonian [6—9] or phonong10] and theconfinemenbf charged par-
ticles (beams in acceleratofd1-15 and Paul trap$16]).
Hence the results of the present paper are relevant to many

HeH. + g|q|7= P>+ Q2(t) g’ physical problems, ranging from atomic-molecular to macro-
fin "y 2 scopic length scales. A possible application to the Fermi-
Pasta-Ulam problerfil 7,18 will be considered in Sec. IX.
Xy - From now on, it is explicitly assumed that the EI condi-
* qul (v>2, a>0, «=0), @ tions are satisfied faH;,. In the next sections we study Eg.
(3), both analytically and numerically. The main results are
as follows:
*Electronic address: esposti@ua.es (i) Vanishing and BOWL solutionghere are solutions
"Electronic address: ferrari@df.unibo.it [denoted ag),,(t)] thatvanishasymptotically, with envelope
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exp(—wt). q,(t)’s are theonly possible vanishing solutions. oscillator[Eqg. (3)] achronological humplt is shown that the
The corresponding set of initial values;(q;) is aclosed ~BOWL solutions at low energy can be regarded as a se-
curve S, in the phase-space plane. Apart fray, all the quence of correlgte_d chron(_)l'oglcal humps. Acpordmgly,
solutions arébounded and oscillating without lim{BOWL f[hg .BOWL-to-vanlsh!ng transition can b.e described as an
solutions. The maximum energy achievable by the Vanish_mflnlte-scale correlation of the chronological humps. Due to
ing solutions isbounded from abovéy a valueE,. The the analogy between Eq3)_ and the q“a”F“m _p_olaron prob-
maximum energy achievable by the BOWL solutions is/€M: the universal properties addressed in p@intapply to

bounded from belowy a valueE, 0. BothE, andE,  are the mobile-to-self-trapped polarortsansition as well.
independent from the initial conditions.

(i) BOWL solutions at low energif the initial energyE; ll. AN INTEGRAL REPRESENTATION OF EQ. (3)
is small compared to a certain characteristic s¢gle the
energy of the BOWL-solutions exhibits an almost periodic
sequence of peaks, centered around instafitg, n
=1,2,...}. The peaks’ shape is well described by the ex-
PressionE ., exp2w(t—T,)|, Emax being the maximum en-
ergy attained. The mean value of the peak-to-peak recurrence . .
time turns out to beT pea= o~ IN(Eyay/E;), at low initial frf (H-f_(Of (H=1, (6)
energy. . I .

(iii ) Critical dynamics The behavior of the BOWL solu- Where the functionsi.. (t) arebounded and oscillating with-
tions is singular, when the initial conditions tend to any pointout limit (BOWL functions. The condition in the second line
of the curveS,, (the initial locus of the vanishing solutions (Wr=1) is not necessary, but leads to some simplifications.
The singularity isuniversal and results in a divergence of The two constants|.. determine the arbitrary initial condi-
the peak-to-peak correlation tim&,.,. Therefore, the UONS forgy,(t). The Green-function method can be applied
BOWL-to-vanishing transition is a critical process, driven by to the linear part of E¢(3), by treating the nonlinear term as
the initial conditionsfiz(qi ,0;). The curveS,, is the locus agien funct|on.of time. Th'§ makes it possible o write the

o i - - @ , equation of motion(3) in an integral form, whose solution
of the “critical points” z. of the transition. The quantitiR

" has the same initial conditions gg,(t) att=t;:

=|E,—E,/E. can be taken as the “relevant fieldE(z.)
being any initial energy attained by a vanishing solution. On
defining expeTyea) as the “correlation length,” the “prin- q(t)=
cipal critical exponent” of the transition turns to lze=1,
i.e., expeToead *R ™.

(iv) BOWL solutions at high energyf the initial energy +
E; is large compared to a certain characteristic sEglethe
fluctuating partQ3£(t) of the square frequency (7)

If Q2(t) satisfies EI conditions, the general solution for
Hamiltonian(1) can be written as

Qin(H)=0q,f () +g_f_(1),f.()=u(t)exp * wt),

t
a—a [ dv f_(t'>|q<t'>|72q<t'>}f+<t>

t
qf—aft_dt’ fAt’)lq(t')l“q(t’)%(t).

. 1 [t From now on, we assunte=t;, unless otherwise stated. On
2 —_ N2 2__ I OY2 4! il i

Q5O =Q[1+£M0)], Qo_tl'f:c t—tJtidt Q%) @ multiplying both sides of Eq(7) by exp(-wt), then taking
the limit t—, the boundedness gfft) yields

can be treated asperturbation and the solutiom(t) can be
expressed agy(t) +O(&;t). The unperturbed pady(t) sat- I ) : .

isfies theautonomousnonlinear equation q:=a t dtf-(a®*"*q(t)  (identity). ®)
. ) I

o+ Qe ot @|do|”~?0o=0, ) Note that expressiofB) is just anidentity, not an equation.

hereQ2. | freci ¢ o be determi (Jcn general, it doesot determine a relation between the two
wherelley IS an elfective square frequency, to be determine onstantsq-., unless such a relation does exist indepen-

self-consistently. The symbd(xy) is used, here and in - yonyy  On re-expressing Eq7) in terms of Eq.(8), one
what follows, to indicate a function vanishirgg leastlin- ,pains another equivalent form of the equation of motion, in

early inx—0 and uniformly iny. Hence, in the high-energy hich the constang, is (seemingly eliminated:
regime, the energy is conserved, apart from relatively smaIYV

fluctuations just above the initial valug . w
(v) Chronological humps and self-trapped polarofihie q(t):q_f_(t)+af dt’ ¢(t,t")e lq(t")|72q(t’),

equation of motion(3) can be mapped into the eigenvalue {i

equation for aguantum polarorin one spatial dimension. A (93

self-trappedpolaron is a quantum solution localized in space,

and vanishing exponentially atoc. The classical analog is a

solution of Eq.(3) that starts with zero amplitude at

— oo, attains a maximum amplitude at a finite time, then van- Bt =d(t’ t)={

ishes again at= +. We call this solution of the nonlinear ’ ’

where

up(tu_(t’) for t=t’

u_(tuy(t’) for t=t’. (9b)

026218-2



INSTABILITY VERSUS NONLINEARITY IN CERTAIN . ..

The advantage of using Eg®) instead of Eq(3) is that the
former contain explicitly the new time scate !, i.e., the
“signature” of the El in the linear oscillatdrEq. (1)]. How-

ever, the integral equatiof®a) doesnot determine, in gen-
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dius. We are not able to calculate this convergence radius in
general. However, in Sec. V we will show that the cufize.
(13)] is aboundedset, under suitable conditions &¥’(t).
This implies that the convergence radius of Et03 is fi-

eral, a unique solution, since the value of the integral on theite.

right-hand side of identity8) can be fixed by the arbitrary

constanty, , independent of]_ .

Ill. VANISHING SOLUTIONS

When looking for vanishing solutions of Ed3), one

should first note that they are less and less sensitive to the
nonlinear term, as time goes by. Asymptotically, one expects

to approach a solution proportional fa (t) [Eq. (6)]. It is
not difficult to prove that the envelope ahy vanishing so-

lution is, necessarily, exp(wt). Furthermore, the expression

g_f_(t) must be approached in the limit—0 atanytime.

Equation(9a) itself suggests the general structure of the van-

IV. BOWL SOLUTIONS IN THE LOW-ENERGY REGIME

From the boundedness theorem proven in REf.it fol-
lows that any solution of Eq(3) is either a vanishing or
BOWL solution. Hence

Sgowl= R?— S,

is the initial locus of the BOWL solutions. These are char-
acterized by the property

g..= lim sup{|q(t)|}>0.

t—oe (t,0f

(14)

(153

ishing solutions. The integral term can indeed be treated as a . )
perturbation of the first term on the right-hand side. It is Furthermore, one can always findnzonotonically decreas-

obvious that the resulting solutidthat we denote ag,,(t) ]

will be asymptoticallyvanishing with the same envelope
exp(—wt) asf_(t) [Eq. (6)]. We thus introduce an expansion

in powers ofa,

qw<t>=q,f,<t>+n§l a"gn(t),

(109
where, for example,
O
ti
X[f ()2 (). (100
The constant
q:=alq_|""2q_C_[1+O(a;q-)],
11

CEL dt|f _(t)|”

[see Egs(10a and(8)] is now determinediniquelyby g_ .
Accordingly, the set of initial conditionS,, corresponding to

ing function M such that

la(O[<aL[1+M(t=t)], limM(T)=0,

T—o

M (0)<c.
(15b)

In view of the discussion in what follows, Iej;=q(t;£i)

express the dependence on the initial conditif]ns(qi i)
From Eq. (1538, there exists an unbounded sequeliGg

such that lim, ...|q(tm:z)| =9..(z). For eacht,,, Egs.(9a
and (15b) yield

|q<tm;£i>|s|q_f_(tm>|+a¢Mﬁ dilq(tiz)[~te el
<|a-f_(tm)| + @dula.(z)|"*
XfJdt[1+M(t—ti)]y’lef“’“m*‘, (16a
t

where
du=|P(t,t")|max- (16b)

On taking the limitt,,— in Eq. (169, it is seen thaf _(t,,)

theq,(t)’s is acurve in the two-dimensional phase space of vanishes, and the integral in the last term tends«o 2 due

the oscillator. With the aid of Eq$6) and (7), one has

Au(t)=0,(t)(f/f ) +a. /f () [ ()#0], (12
and the curves, reads, from Eq(11),
0 R B 0 B [+ ks
Sw=[zi_(qi1Qi)v qi_qi{f(ti)+a|f_(ti)|7
><C[1+O(a;qi)]“ [f-(t)#0]. (13

The quantityO(«;q;) originates from the power expansion

to properties(15b) of the functionM. Hence, recalling that

limp_.|a(tm:z)|=0.(z), one is left with the following
lemma:

17

@ 1(y-2)
2 ¢M

SinceQ* isindependent of the initial conditionemma(17)

has an important consequence. Ggi.(z)=0..(z) be the
maximum oscillator amplitude. Then

q(t)=BOWL=>qm(Zi)>( =Q*.

Owma(Z)) =iNf 0. (2) = Q* >0.
{z}

(18

(10a, and is defined only within a certain convergence ra-Or, equivalently, we have the following statement:
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Statement 1Under the El conditions, the maximum am-

plitude Qua(z) and energyEyu(z) attainable by the
BOWL solutions of Eq.(3) are both limited from below by
strictly positive valuesy;; andE;;, independent of the ini-
tial conditions. It should be noticed that Statement 1 simply
expresses the existence qfs and E;;, whose explicit cal-
culation, however, is not trivial.

The existence of BOWL solutions witarbitrarily low
initial energy follows from Eq.13), ensuring that it is al-
ways possible to take, outside the curves,, with |z| ar-
bitrarily small. We address such BOWL solutions with spe-
cial interest, because the point@0,0) in the initial phase
space is a special critical point for the BOWL-to-vanishing
transition. The critical nature of the limi;— O follows from
Eqg. (17) and Statement 1, claiming that the BOWL function
la(t;z;)| must fit a valueQ* >0 independenbf |z, even in
the limit of vanishing|z|. This might look inconsistent with
the obvious requirement Ii‘gi]éoq(t;ii)=0 for eacht. The
solution of this apparent paradox is that in the lifgjt—0
(|zi|—0), the zero functiom(t;0)=0 is approachedhon-
uniformlyin t. Indeed, a solution starting with an arbitrarily
small energy does initially behave Iimn(t;ii) [Eq.(6)]. If
the solution is a BOWL solution, an exponentially increasing
envelope expgt) will certainly drive [q(t;z)| toward the
nonlinear regime, and make the amplitude fit the valie
the first time at the instari* (z;). What happens is that the
shortest timeT* (z;) for fitting Q* does diverge in the limit
of small initial energy, i.e., Iirgi‘HOT*(Zi)=oc‘.

An energy scaleE; determining the low-energy regime
for the initial energyE; can be obtained as follows. For the
system to behave, initially, as a linear oscillator, the energ
E; must be small compared to the nonlinear energy at
=Q*. Hence, from Eq(17), the low-energy regime can be
determined by the condition

1
Low energy: E;<E,= ;

¥I(y=2)
—_— . (19
(2¢>Ma2’7)
In order to test the validity of the preceding arguments
we have numerically solved19] the nonlinear Mathieu
equation, characterized by a cosine fluctuating frequency

2t

|

Qz(t)=1—§cos( (20

We have fixed;=0, y=4, andé=10"! and tuned the pe-

PHYSICAL REVIEW B3 026218

(a)
H[{]
0.07 Theax
0.06
0.05
0.04
0.03
0.02
0.01
t
200 400 600 800 1000 1200 1400
E
‘Max
124
-0~ 6=3r/4 ,§
1.0 L-0-- 6=np2 ¥
] i g
[-¢-- 6=n/4 ;s
0.8 i
F-v-- 6i=0 .
1 g
06 —— 3
i
] i
0.4 g
5
LA
0.2+ E§~
E L AECEE SRFPER SEPPRI BEPPRE iy
0 00-
) T T v T T T T T T
-16 -14 -12 -10 8 6 4 2 0
InE

FIG. 1. (a) Time evolution of the energy of a BOWL solution
ith E;=5%X10"7 and §;=0 (low-energy regimg (b) Eyax VS

n E; for various choices o, . Ey.y is calculated on averaging the
values of all the maxima observed during the different evolutions,
and the corresponding standard deviation is always within the sym-
bols size. The arrow on the left indicates the numerical estimate
E,=6.66x10"2, and the dashed lines are guides for the eye. Se-
lected values are=1 andr=3.145029the center of the first gap
having an exponential rate=2.4975% 10 2). Here and in the
next figures, all quantities are dimensionless.

>

I|m EMax(Zi) = Eo>0

|zi|—0

independent o#), , (22)

i.e., the limiting energyg, is independent of the initial con-
ditions. We have evaluate&, numerically for different

riod 7 in order that the El conditions are satisfied in the choices ofe, performing the calculation both for the first and

“gaps” of Eq. (20) [20]. The result reported in Fig.(4)

for the second gap of Eq20). The estimatexEy/w=2.66

shows that’ in the |OW_energy regime, the BOWL So|utions’(With a deviation in the last Sig.niﬁCant d?gitsuggests
energy exhibits a peaklike envelope. The maximum energfhat, for y=4, a convenient scaling quantity should be

EMaX(Ei), attained by the oscillator at the peaks’ top, can b
studied as a function cﬁi , by passing to a polar coordinate
system E;, 6,), in which the angle is measured from the
axis andE; essentially measurés|2. Figure 1b) shows that

€

X energy< w ™~ 1. While the dependence anis fully justi-
fied on the basis of straightforward scaling argumeRtsf.
[21], p. 61), the dependence an is not as easy to find. From
Eq. (19 one can introduce a nonuniversab-dependent
proportionality factore through

(¢4
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FIG. 2. (a) Detail of the first peak of Fig. (B): The natural
logarithm of the energy normalized f,,,=6.666x 10 2 is plot-
ted vs the timd, aroundT,;=262.6. The dashed straight lines rep-
resent left- and right-hand best fifg gt+ B r. The slopesA
=+5x%10 2 and the offset88, = — 12 andBg= 13 confirm (with
an error<10%) the exponential shaggy,, exp(—20|t—T,|). (b)
T peakVs IN(aE;) for 6;=m/2 and for two choices of. The value
of Tyeaxis calculated as twice the distance between the first fgak
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also fits the numerical data well, in the low-energy regime
[Eq. (19)]. From Eg.(21), it is immediately seen that

im Tpead E) = lim IN(Eq/E))=c,  (23b
Ei—0 Ei—0

i.e., the average period spanning the exponential peaks di-
vergeslogarithmically in the limit of vanishing initial en-
ergy.

The numerical results just described can be interpreted on
a physical ground. If the initial energy is loM£q. (19)], the
oscillator spends most of the time in the linear regime de-
scribed by Hamiltonian1). This explains the exponential
shape of the peaks, which is clearly due to the assumed EI. In
the time interval\ 7, just around the top of the peaks, the
nonlinear term has a highly nonperturbative effect, switching
the oscillator from an exponentially increasing component
f . of thelinear motion, to an exponentially decreasing one
f_. Hence the oscillator switches between alternate pro-
cesses of absorption and dissipation of the energy. It is
clearly seen that the energy does increase on average to well
above the initial value. I 7,<T 4, the process of absorp-
tion and dissipation of the energy is almost periodic. In fact
the exponential increase of the energy’s envelope figro
Emax IS rapidly followed by asymmetricalexponential de-
crease fronk,,,, to E;, that takes about the same time. Then
the results of Eqs(23) follow from the equationEy,y
=E; exp@Tpead, ON assuming that the vaILEaMaXocqf,lax is
attained in an essentially linear regime.

We conclude the present section by stressing that the lim-
iting valueE, [Eq. (22)] is an important quantity for practi-
cal applications concerned with tleatastrophicbehavior of
certain macroscopic systems described by &j.(for ex-
ample, the horizontal elastic bar with longitudinal time-
varying force$. Such systems are characterized by an energy
scaleE;,, marking the onset of somiereversible process
(viscous flow, fracture, etk. SinceE, is the maximum en-

andt;=0 (this is correct because at low energies the energy enveergy attained by a BOWL solution in the limit eanishing

lope starts essentially in a minimymrhe straight lines represent

initial energy, the conditiofcy<E;,, ensures that the system

the two best fits, and the overall universal behavior can be summas glways in a “safe” regime, even if some external influ-

rized aswTyeqe=b—aln(aE;), with b=—1.4+0.1 anda=1.00
+0.01. The periodr has the same values as in Fig. 1.

e ® YI(y=2)
Ejg=—| ——— >E, . 22
0 7(2¢Ma2/7 | ( )

For y=4, the numerical data reported in Fig. 1 yied
=1.71x 10

The detailed shape of the peaks, reported in Figy,2
shows that the expressidfy,exp(—2w[t—T,|) fits the nu-
merical data very well, except in a small interviat,, just

around the peak’s top. Furthermore, the recurrence of peaks

is almost periodic, i.e., T =nTyeqt 6Ty, with |6T
<Tpeak- The average periolipeqis studied in Fig. fo) as a
function of E; and w. The expression

Tpeai= @ IN(Eyax/Ei) (low energy (239

ence does slightly remove it from the equilibrium state. In-
stead, the conditioky~E;, corresponds to a “dangerous”
regime, in which even an arbitrarily small deviation from the
equilibrium state can produce catastrophic effects. It should
be noticed that the safetgr nonsafety condition, expressed

in terms ofE,, is anintrinsic property of the system, since
E, doesnot depend on the initial conditions.

V. TIME REVERSAL AND THE BOUNDEDNESS OF S,

In Sec. lll, a question was left open, concerning the
boundedness of the cun&, [Eq. (13)]. The results of Sec.
IV can now be used to make the following statement:
Statement2: If Q2(—t)=0Q2 (t) satisfies the same El
conditions a€)?(t), and yields the same exponential ratg
thenS, is a bounded set of the initial phase space. Equiva-
lently, the convergence radius of the series expan&ifa)
for the vanishing solutions iinite. Furthermore, the initial
energy of the vanishing solutions on the cu&gis bounded
from aboveby the valuek, [Eqg. (23)].
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One should note that the condition 6¥F(t) underlying  divergence off xS a general feature of the transition. This
statement 2 is actually very weak. The simplest way toprovides a method for constructing the cuSgof the initial

implement the EI conditions is to take?(t) as a BOWL  points of the vanishing solutions, starting from the BOWL
function. If its fluctuations areandomthe exponential insta-  solutions. In fact, we can now writ8, as follows:

bility in Eq. (1) is ensured, regardless to the amplitude of the

fluctuations themselvetsee, for instance, Ref5]). In the

case ofperiodicity, the El conditions involve the average So=1Z¢;  lim Tpeafz) =2} (24)

square frequencf) [Eq. (4)] and the period of the fluctua- z—7,

tion itself, but not the sign of the timgl,3,4]. In these two

relevant cases, it is clear that passing frdd?(t) to ) . . ) )

02(—1) has no influence at all on the EI conditions and onhere is a practical convenience in adopting E2¢) for

the exponential rate. numerlca! cal_cqlaﬂ_ons. In.fact, dL_Je to thg finite precision of
In order to prove Statement 2, let us apply the time-the mgchlne, itis wrtqally |mpos§|ble to find the exact initial

reversal transformation to Ed3), on setting e o) =q cpndltlons forthe_ vanishing sol_ut|ons, and c_iraw the ciBye

(—t), o=—t. Itis clear that the motion equation fqf.(c") dlref:tly. In practice, aI_I numerlcal calculatlons_ y|eld, auto-

remains the same as E@®), with the new square frequency Taucally, BOWL solutions, if extended to sufficiently long

02 (o). Though o) is notin general a solution of the ‘MeS: . . -

ec;fjv;ti())n of m%tigrr?(é),)the assun?ed properties &fe\,(a) A .g.enera'l problem in thg numerical Stl.de of the C.”t'cal

make it possible to extend the results of the preceding sedransitions, Is to make theniversalproperties emerge in a

ions 10 () t00. In particular, letg,. (o) be a BOWL Clear way. If _the <_:r|_t|cal points are not known exactly, this

solution with an arbitrarily small initial energ¥; at o;, tmhay be adqmte difficult ttask. In the hpres;nt case, lhgwever,

attaining the maximum enerdyy., at > ;. If we assumes; e preceding arguments suggest that ékectcrifical be-

o . havior of T peaxis

as the new initial time and tak@q(X1), — e 21) as the
new initial conditions, them,.{ — o) =q(t) is a solution of
Eq. (3), whose energy decaygxponentially from E,;,, to - E.
E,. Therefore, in the limiE;—0, q(t) becomes aanishing  Tpeal Ei)=To(Ec) + @ ! '”(m) (Ei—Eo) (25
solution, with maximum energl,.x— Eq, as shown in Sec. '
IV. The initial conditions forq, (o) are arbitrary, apart
from taking E; smaller and smaller. Hence the precedingif E is any finite energy on the critical cun&,. Equation
argument can be applied to constraaly vanishing solution.  (25) is just a generalization of E¢23b). It is customary to
This leads immediately to the Statement 2. In particular, thigxpress the universal properties of a critical transition
implies that the solutions are necessarily BOWL solutions, ifthrough a “critical exponent’a expressing the divergence of
E;>E,. Therefore, the nonlinear term in E(B) acts as a some physical quantity, when the “relevant fieldR ap-
limiting mechanism both for the energ@dsorbedfrom the  proaches a critical valug; . A suitable rescaling can be used
environment and for the energiissipatedinto the environ-  to setR.=0. On definingR=|E; —E.|/E., Eq.(25) yields
ment.

The analytical construction of the cun&,, based on B
Egs.(10a and(13), is far from easy. In Sec. VI we will use eXpoTpead*R™%,  a=1. (26)
the critical properties of the BOWL-to-vanishing transition

to implement the numerical calculation §f, . The “principal critical exponent’ of the BOWL-to-

vanishing transition is thereforea=1, if we define
exp@Tpyeay as the “correlation length.”

For the nonlinear Mathieu equatiq20), the numerical
construction of the curvés, is reported in Fig. @). The

A critical process is usually related to the divergence of amethod based on EqR4) is useful to locate the points &,
certain “correlation length” characteristic of the system. In with any required precision. However, if the square fre-
the case of the BOWL-to-vanishing transition, such a correquency isperiodic[ Q2(t)=Q?(t+ 7)], a more rapid method
lation length is related to theaveragg recurrence tim@ .« Can be used to obtain a rougher estimatgofrom which an
between the peaks of the BOWL solutiof®ec. IV). A spe-  accurate calculation can be starf&@g. 3(b)]. This method is
cial example has been already given by E28b), showing described in the Appendix. In Fig(& we also report two
that the recurrence time does actually diverge logarithmicallyanalytical evaluations, performed at first and second order, of
when the BOWL solutions approach the special vanishinghe series expansiori$0a and(13). It is seen that the agree-
solutionq,,(t)=0. However, it is clear that the divergence of ment between numerical and analytical results actually im-
TpeakiS Not limited to the cas&;—0. If a BOWL solution  proves with increasing order of approximation. However, the
does approach a vanishing solution, itsnimumenergy small improvement from first to second order, indicates that
must vanish. On taking the initial time in this minimum, the the convergence of the series is probably very slow. As ex-
fundamental Statement 1 ensures that the next maximum wiflected from Statement 2, the cur8g is bounded and sym-
be split off by larger and larger time intervals. Hence themetric with respect to the axis. In fact, the square frequency

VI. CRITICAL DYNAMICS: BOWL-TO-VANISHING
TRANSITION
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FIG. 3. (&) Construction ofS, in the initial phase space. Points 1 —T—TTT T T T T T T
. . . . = - = K = - — - 2 2 -
represent numerical values. The outer and inner lines are first- an 2o s s 7 6 5 4 S 2 L0
second-order approximations based on expansi@ia, respec- In(E-E VE )

tively. Selected values far and 7 are the same as in Fig. 1. Open i i

circles indicate the three critical points considered in Figs. 4 and 6. G- 4- (@ and(b) Numerical tests of Eq27) about pointsh, B,

(b) An alternative numerical method, based on one-period mapgnOIC of F!g. 3, respectively. Plofa) has been obtained on varying

(OPM'’s). For details, see the Appendix. g; at fixedq; =0 (pointA). Plot(b) has been obtained on varyikg
at fixedg;= = 0.19809(pointsB andC). In both casesa) and (b),
the linear slope is slightly larger than 1 f&>E_., and slightly

) ] ) ) ) smaller than 1 folg;<E.. However the mean slope is just=1,

in Eq. (20) is anevenfunction of the time, so tha®{(t)  within the errors. We have checked that this compensation effect

=02(t). In Figs. 4a) and 4b), the numerical check of Egs. stems from the evaluation &, and can be reduced by tunigy

(25) and (26) is reported, close to some critical poirﬁ§ more and more exactly. Selected valuesdaind 7 are the same as

#(0,0). The results obtained on the BOWL-to-vanishing™ F19- 1.

transition can be now summarized as follows, in the lan- . . .

guage of critical phenomena. E..(z)=Ilim supH(p(t;z),q(t;z),t) (27)

(A) The transition is characterized by the logarithmic di- tooe(t,ee]

vergence of the peak-to-peak recurrence tilga. The as the “marker” of the transition. From the fundamental

“critical points” z. are the initial conditions yielding van-  statement 1, one immediately obtains the following property.
ishing SOIUt'OnS’ that form alosgdcuryesw [Fig. 3(a)']. (C) The upper IimitEx(Zi), of the energy in the interval
(B) The divergence ofT 4 is universal ChoosingR (t,=[ for t—=, has afinite-jump discontinuityAE;,,
=|E,—E.|/E, as the “relevant field” of the transition, one >E, at the transition. ume
sees that the divergence of exfi{,.,) is characterized by a
“critical exponent” a=1 [Figs. 2b), 4(a) and 4b)]. The
quantity expTpea) Can be regarded as the “correlation

In fact, Statement 1 ensures tl’fal(fi)innf>O for each
Zi € Sgow- In particular, one hak..(z)=E;y even ifz ap-

length” of the system. proachesfce S, from Sg,, . However, it is obvious from
Another simpler way to look at the BOWL-to-vanishing definition (27) thatE..(z) =0, sincez is the initial point of
transition follows from using the quantity a vanishing solution.
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VIl. HIGH-ENERGY REGIME such thatg, (1)g_(t)—g_(t)g. (t)=1. Iterating this proce-
The boundedness theorem proven in R&f.has an im- dure to higher qrders isa complicateq task in general. For the
portant consequence on the high-energy treatment of3q. Mmomemt, we wish to stress that the first term in the left-hand
Since the autonomous term ensuring the boundedness diide member of Eq30) is a linear functional of(t). If &(t)

verges more than linearly with the coordinate, the nonautolS @ random-varyingfunction of time, this term will intro-

nomouslinear term is relatively small when the oscillator dUc€ @ chaotic element in the high-energy dynamics. This
amplitude(energy is large. Therefore, when the amplitude is remark is important for the discussion on the transition to
large (small velocity, the time variation of22(t) is asmall ~ chaos(Sec. IX. o

effect. However, when the amplitude is small, thedocityis From the above, one expects that, at a high initial energy,
large, which implies a short action time of the nonautono-the oscillator energy remains almost constant during the time

mous term and aadiabatic effect resulting from the time- €volution, with fluctuations of ordeg(t). To see this, we
variation of Q2(t). From what we have seen above, in theely on the canonical perturbation thed32]. We separate

high-energy regime the solutions of H§) are characterized the complete nonautonomous Hamiltoniéd) into an au-
by a frequency of oscillation large compared to theximum ~ tonomous, nonlinear part

rate of change/y.,= |Q(t)/Q(t)|MaX. In contrast to the low- ) )
energy case, the oscillator now spends most of its time in a _P 24" @

h . . . . Hanl +Qo + |q| ' (32)
nonlinear regime, with a practically constant linear term 2 2 vy

02q (adiabatic effegt The remaining linear parftQ3(1
+§(t))—Q§ﬁ]q acts just as a perturbatidsmall effecj. A plus a fluctuating perturbatioﬂ%g(t)/Zqz. The aim is to
nontrivial problem is that the effective square frequencyfind, order by order, a canonical transformation to the action-
Qgﬁ, yielding the adiabatic effect, is an unknown of the angle variables J, &) such that the new Hamiltonian de-
problem, to be found self-consistently. The unperturbed sopends only onl. In this way,J is a conserved quantitfan
lution, oscillating with large frequency, is therefore given by invariany, and ¢ evolves linearly in time, with rat@+/4J
Eg. (5). An energy scale determining the high-energy regime(if 7 is the new Hamiltonian at the order of intenegven at
can be found self-consistently. L&, (E;) be the frequency first order, the Fourier coefficients of the generating function
of the solution of the unperturbed equati¢®. Since the of the canonical transformation are affected by the problem
equation is nonlinearf),(E;) is an increasing function of of the “secularities,” namely, the existence of small denomi-
the energyE;. The high-energy condition read?,(E;)  nhators typical of nonlinear problems. Special techniques to
> vyax, OF, equivalently, avoid the divergence of the perturbative terms have been
developed. In particular, here we recall tjlebal removal of
High-energy: E;>E,, Q.(Ep)=vux. (28  resonance$22], and a recent method proposed by Lewis and
co-workerd 23,24 specifically constructed within the invari-
Under condition(28), one expects that the exponential insta-ant theory. It is the removal of the secularities that leads one
bility of the linear Hamiltoniar(1) is quite marginal(while it ~ to introduce an effective self-consistent frequefizy;, as in

was crucial in the low-energy regime Egs.(5), (30), and(31), essentially driving the denominators
According to Eqs(4) and(5), we introduce a perturbation out of the resonance conditions.
series The explicit form of the first-order resuliglamiltonian,

action, frequency, etcdepends on the Fourier coefficients of

* the perturbation and on the zero-order action-angle variables.
q(t)=do(t) + X gal£t], (290 In Appendix C of Ref[21] these are worked o(for evenvy)

n=1 in terms of generalized Jacobi elliptic funtions. In the case
v=4, one deals with standard Jacobi functid@]. The
relationship between the old action and the new action-angle
variables is given in Eq(4.26 of Ref. [21] for a generic
periodic frequency fluctuation. In the special case of the

where now theg,[ £,t]'s are nth-orderfunctionalsof £(t),
explicitly depending on the time. A recurrence integral rela-
tion does actually conned, to the lower-order terms. In

particular, Mathieu problen{Eq. (20)], the time evolution of the zero-
. order actionJ, can be written in terms of a first-ordeon-
gi[&t]= —Qéf dt’ W(t,t")qo(t")&(t") servedactionJ,
15

t Jo(t) =J—EAF(M), (33
+(Q%— Q) f dt' W(tt)do(t). (30
t where A measures the effective strength of the perturbation

The kernel (t,t")=g, (t)g_(t')—g_(t)g.(t") in Eq.(30)

is expressed in terms of two independent solutions of the A= 2Han(1=- 1) |Q(= )| 77 (34)
linear equation kKX x)0Q2 v2-1
g+[Q%+a(y—1)do(t)]” *]g=0, (3D and
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VIII. A QUANTUM ANALOG OF EQ. (3):
CHRONOLOGICAL HUMPS AND SELF-TRAPPED
POLARONS

The stationary Schobnger equation

1%

3 gz Hle VOOl lul2p=0 (m=n=1)

(39
is formally equivalent to Eq(3), if the time is read as a

spatial coordinate, andq(t) is replaced by the wave func-
tion (x). The average valuélg of the square frequency

FIG. 5. High-energy fluctuations of a BOWL solution. Selected [Ed- (4)] plays the role ofitwice) the energy eigenvalue,

values fora and r are the same as in Fig. 1.

-1 o
Ft)= UTcosgzai +alv+Dt]
v+1

T

co§ 29+ w(v—1)t],
(39

In Eqg. (34), K indicates the complete elliptic integral of the

first kind andQ( — ) = exd — mK(1+ )/K(— )] [25], with

 VQgt4daH .~ 0F

K= .
VQG+4aH 4+ Q3

(36)

In Eq. (35, ¥; denotes the initial first-order angle, that

evolves with the nonlinear frequency

QO v

o e 2K e

Equation (37) also determines the parameter 7(), /.
The relationship betweedy, andH,,(p,q) turns out to be

4Hamm (1+K)K(—K)—(1_K)E(—K)’

JO:3QO7T K

(38)

whereE is the complete elliptic integral of the second kind
[25]. From Egs.(38) and (39 it is seen that the oscillator
energy is almost constant, with small oscillations of oréler

(see Fig. 5 Moreover, from Eq.(35) it follows that these
oscillations have a quasiperidt= /(v —1), where the two

cosines in Eq(35 have a maximum constructive interfer-

enceFya="v.

and the fluctuating part dR? then becomes an external po-
tential. The nonlinear term can in turn be read asatrac-
tive potential energy multiplied by the wave function. In Eq.
(39) the attractive energy is a homogeneous function of the
probability density of the quantum particle, i.e., the particle
is assumed to undergo a sort of self-attraction. This model-
system is actually well known in condensed matter physics
[26]. It describes a charged particlghe polaron in a
strongly polarized medium, approximated by a uniform “jel-
lium.” The potential energyWV(x) can be regarded as the
nonpolarized part of the host lattice. For exampleQf in
Eq. (3) is periodic its quantum analofEq. (39)] describes a
polaron in a one-dimensionetystal of nonpolarized objects.
If ¥(x) vanishes ta+ o, one has the so-called “self-trapped
polaron.”

The notion of self-trapped polaron can be applied to Eq.
(3) too, by extending the definition dR?(t) to anyt<t;.
The integral form of Eqs9) can indeed be “time reversed,”
under the weak conditions underlying Statement 2. There-
fore, an expansion like Eq10g can be found even for a
solution vanishing at= —«. The matching of the two van-
ishing branches &t determines in general isolated points in
the initial phase space, which are functionﬁrﬁ‘. The nor-
malization of the solution would finally solve the eigenvalue
quantumproblem forQ(Z,. In theclassicalproblem, however,
no normalization is required, an@3 is a fixed arbitrary
quantity. The above simply outlines the existence of special
initial conditions att; , such that the solution has zero ampli-
tude att= —o0, increases exponential(jn envelopé up to a
maximum, then vanishes againtat + . We call this solu-
tion a “chronological hump,” to distinguish it from the self-
trapped polaron. We stress that the existence of chronologi-
cal humps forﬂé>0 is far from trivial, and is closely related
to thefluctuating part of the square frequency. To see this,
the gquantum analofEqg. (39)] is again convenient. I¥/(x)
=0, in fact, the energy eigenvalueof the self-trapped po-
laron would be certainlynegative The positive part of the
spectrum would correspond to plane-wave stéaigsbile po-
larong only. However, ifV(x) is periodic the spectrum in
the absence of the self-attracting term is characterized by
“gaps” of finite width, spanning the “bands” of allowed
energy valueqthe Bloch theorem Gaps exist above any
arbitrarily largepositivevalue of the energy. At this stage,
the self-attractive term can be regarded as a “defect” in a
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crystal. The typical effect of a defect in a band-spectrum is to (a)
produce localized levels in the gaps. This explains why a
fluctuatingV(x) in Eq. (39) may yield self-trapped polarons 007 | H[1]

even in thepositivepart of the spectrum. Coming back to the
classical problem, we can conclude that, §6t) =0, a chro-
nological hump can exist only if2(2)<0. Then, in the case
Q§>0, anonzerotime fluctuation of the square frequency is
a necessarycondition for the existence of chronological
humps.

The chronological humps are closely related to the
BOWL-to-vanishing transition studied in Sec. VI. To see
this, let us consider a BOWL solution at low ener(§ec.
IV) and the centell; of the first pealFig. 2(a)], in which
the energy attains the maximum valbg,,. Fort>T;,, the
energy decreases exponentially for a time interval compa- ~
rable withT¢,/2. Taking smaller and smaller values of the (b)

initial energy, we have seen that bo‘[@zT*(fl) andT peak HiA
become diverging larggEgs. (23)], while Ejy. tends toE,. 0.07

If we “follow” the peak’s shift to +o, we find a limit 0.06
solution vanishing in both directions of tinteow referred to

asT,) and attaining a maximum enerdy,. A solution of 0.05
this kind is nothing but a chronological hump. Hence, for

300 -200 -100 100 200 300

Ei—0, it is seen that the divergence Bfe.is also respon- 0.04

sible for the appearance of a chronological hump, whose 0.03
center “runs away” to infinity. In order to see the chrono-

logical humps at dinite time, one simply has to approach the 0.02
critical curve S, in any pointz.#(0,0), and study Eq(3) 0.

and its time-reversed form. In Fig. 6, we show the numerical

results obtained in three different cr|t|cal_ poms#(0,0) . 300 200 100 100 200 300 4
The data refer to the energy of the solutions in both direc-

tions of time. It is clearly seen that the complete solutions are ©)
chronological humps, whose maximum enekjyyis attained

at differentfinite times (in the past or in the future, with 007 | H[1]

respect tat;), depending on the critical initial poirftc. In
particular, Fig. 6a) shows the chronological hump attaining
its maximum energy just around tltial time.

The BOWL-to-vanishing transition can be now inter-
preted in a more physical way. The peaks described in Sec.
IV at low energy can be regarded as “correlated” chrono-
logical humps. The transition simply shifts the chronological
humps apart, leaving just one at a finite timéciit (0,0), or
leaving none, ifz,;=(0,0). The time scald ey is actually
the correlation time between the chronological humps.

Due to the analogy between Ed8) and Eq.(39), these 2300 -200  -100 100 200 300
results are relevant for the polaron problem too. In particular,
all the universal aspects of the BOWL-to-vanishing transi- FIG. 6. Evolution, in both directions of time, of the energy of
tion (Sec. V) can be now extended to the transition from three chronological humps with different initial conditions tat

mobileto self-trappedpolarons in one spatial dimension.  =0- (@), (b), and(c) refer, respectively, to poin#, B, andC in Fig.
3. Selected values far and 7 are the same as in Fig. 1. Note the

shifting to the futurgb) and to the padfc) of the hump center, with
respect to the hump centered about the initial instant

The present paper addresses a special case of generalized
oscillator, in which the nonautonomous forcdirgear, with
a time-fluctuating strength, while theutonomousorce in-  stability (El) produced by time fluctuations of the linear
creases more than linearly with the amplityds. (1) and  strength under suitable conditiofisl conditions. If the ini-
(3)]. Interest in this problem comes from the interplay be-tial energyE; is large enough, the fluctuating part of the
tween two contrasting mechanisms: the bounding effect oétrength can be treated as a perturbati®ac. VI)). The re-
the nonlinear autonomous terfh], and the exponential in- sulting solutions arébounded and oscillating without limit

t

IX. CONCLUSIONS
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(BOWL), and their energy is conserved, apart from relativelydifferential problem of Eq(40), there are some remarkable
small fluctuations(Fig. 5. El conditions play no essential analogies in the results. First, at high initial energy, the en-
role in this case. ergy of each FPU mode fluctuates about the initial value just

The situation drastically changesHf is small enough. In  like the energyEq. (2), Fig. 5]. At low-energy, a peaklike
this case, El conditions turn out to be crucial. First, theystructure is obtained, with a quasiconstaaturrence time
produce solutions that vanish exponentially in tiSec. 1), T spanning the peaks. This looks very similar to the results
whose initial values lie on a closed cur@; of the initial  obtained in Sec. IVFig. 1(@)], in terms of the average period
phase spacéSec. V). The analogy between E(Q) and the T, The low-to-high energy transition in the FPU problem
quantum polaron in one dimensi¢kq. (39)], leads one to is a famous example dfansition to chaog§18]. To the au-
introduce thechronological humpas a classical counterpart thors’ knowledge, the natugmooth or critical of this tran-
of the self-trapped polaroriSec. VIIl). A chronological sition is still an open question. In the present case, the result
hump is a solution of Eq(3) that vanishes exponentially in of Sec. VI points to a critical transition.
both directions of the time. There are motivations suggesting that the analogies just

In the low-energy sector(Sec. IV), an alternate mentioned areot casual. Indeed, one possible approach to
absorption-dissipation process characterizes the energy of thikee FPU problem is transforming the syste0), of
BOWL solutions, leading to an almost periodic sequence ohutonomous-coupledquations, into a set afecoupled non-
peaks, with about the same maximum enegy,,. A cru-  autonomousequations. A method was suggested, leading to
cial point is thatEy,, is a function of the initial energ¥; decoupledinear equations, including a time-dependent forc-
bounded from belovby a strictly positive valueE;,;. The ing, a renormalized linear frequency and an autonomous fric-
average period’peal(qi ’qi), Spanning two successive peaks, tic_)n term [27,2& Our approach is more C|05€|y. concerned
is a new characteristic time scale determined by the initialVith the non-linear structure of E¢40). On extracting terms
conditions and by» [Eqgs.(23b) and(25)]. The quantityw is ~ depending explicitly o, we write Eq.(40) as follows:
just the exponential rate of thenstablesolutions of the lin-
ear problem Eq(1).

The initial locusS,, of the vanishing solutions is @itical
curve in the initial phase space of poiats- (q; ,q;). Moving +D{M™ VA e 2 ) AN 1+ T A= F L ({A e 210,
on a line of initial points connecting BOWL solutions out- (41)
side and insideS,, it is shown thatT ., diverges at the
intersection point witlS,, . This is what we call th@OWL-
to-vanishingtransition. The transition has a universal char-
acter expressed by a ‘“critical exponené=1, and can be
regarded as the passage from a sequence of “correlate suggestion is to look for a self-consistent approximation re-
chronological hump$BOWL solutions, to a single chrono- lacing theDW’'s and F. with suitable time-varvina func-
logical hump. The larger the time scalge,, the larger the p E(A) k=2 k ) ying
degree of correlation. It is likely that the critical transition tions Di’(t) and Fy(t). For y—1=m integer andodd the
just outlined is also associated with the divergence of thé&ffective equation resulting from E¢41) would be
high-energy series expansipBqg. (29)] along the curves,, .

A+[Q2+ DA 20 JAH DR UA ho 2 ) A - -

where the coefficient®{)’s and the driving forcé", depend
on time through the other variabld#\,;}/ ., while the
Cpighest—order coefficient' y= a,,Cy k... x IS constant Our

Actually, the existence of a critical boundary between “in- A 2., ") 1R r2) (v—2)
ner” and “outer” BOWL solutions suggests that the dynam- AHLADICO At -+ DO A
ics is basically different inside and outsi8g. An indication +FKA(ky— 1)=Ek(t). (42)

of this possibility is given in the Appendix.

In Sec._ l, some physical appli_cations of the presen-t res‘u“ﬁ’his is a generalization of Eq3), including time-varying
were .outllned. Now we briefly discuss a further one, i.e., thg,linear terms of lower order, and a time-dependent forc-
FermrPasta-UIanﬁFPQ problem([17,18. ing. Now, let us assume the same ansatz as in R&7s2§,

The FPU problem is a many-bodyutonomousproblem, o' that the mode-mode coupling should produasdom

with linear and nonlinear couplings among_first-nearesty;nq qenendent fluctuations in the effective equations. If so,
neighbor particles, regularly distributed on a chain. Introduc-  that the fluctuati aﬁ” 0 of th ‘
ing the amplitued\(t) of the modes with wave vectér one we expect that Ihe Tluctuating p (t) of the square fre-

obtains a system of nonlinear equations, with @lhstant quenqy_is randor.n. too. As alread'y discussed in Sec. V, this is
coefficients: ’ a sufficient condition for the El, independent of the value of

Q2. One should note that fitting the EI condition is crucial
for the relationship between E(B) and the FPU problem. In
fact, it is the EI condition that produces the peak-to-peak
recurrence time and all the analogies stressed above. A fur-
ther important point is that the quasiperiodicity of the peaks
(40) in Fig. 1(a) is not due to the periodicity of the frequency
fluctuation. In fact, Eq(233 shows that the average period
Tpeak depends essentially on the initial energy and on the
Despite the fact that Eq3) is basically different from the exponential rates. A random fluctuation is thus expected to

AK+QEAK+ (2% 2 Ck,kl,szklAk2+ e
K1 ko

Akl"'Akm:O.
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yield quasiregular recurrence times, simply because it alwayl®wing property: a OPM startingutside(inside S, always
produces a nonvanishing. At high energy, instead, the remains outsidéinside. In Fig. 3b) we report plots corre-
lowest-order approximatiofEq. (30)] shows that the energy sponding to inner and outer OPM’s, together with the nu-
fluctuations are influenced by the same randomness aserical location ofS, already shown in Fig. @). It is seen
Q2(t). Hence the dynamical equati@B) is an example of a that outer OPM’s always fall ofideal) closed patterns, sur-

random-varyingparametef Q2(t) ], producing anonchaotic
response at low initial energy, andchaotic one at high

roundingS,, . At high energies these patterns have a quasiel-
liptical shape, typical of the level curves of an autonomous

energy. This suggests that the interplay between EI and nomonlinear oscillator(recall Sec. VI). They approach the
linearity studied in the present paper could be a basic mech&-like structure ofS, from outside, by inflecting themselves

nism Underlying one of the most debated questions in mOdmore and more a|0ng th}q;axisl The inner OPM'’s form two

ern classical physics, i.e., the transition to chaos.

APPENDIX: NUMERICAL AND ANALYTICAL LOCATION
OF S, IN THE PERIODIC CASE

If q(t) is a solution starting frorg; = (p; ,q;) att=t; then,
in the presence of a frequency fluctuating with perigdhe
pointssz [p(ti+k7),q(t;+k7)] give rise to thesamesolu-
tion from t=t;+kr (k=1,2,...). Inaddition, given an in-
variant [ p(t),q(t),t] such thatl(p,q,t)=1(p,q,t+7), the
pointsz, will all belong to a certain level curve d{p,q,t;).
We call the set of points

S{z]1={zeR?% z=[p(ti+k7),q(tj+k7)],

k=0,1,2..., zy=2} (A1)

a one-period magOPM). In particular, if a point orS [z ]

symmetrical patterns, inside each lobeSyf. It is clear that
one may locates, as the border line separating one-pattern
(outep OPM’s from two-patterr(inner) OPM’s. An interest-
ing limiting case of two-pattern OPM'’s is indicated in Fig.
3(b) by the two full circles on the axis. Recalling definition
(A1), one sees that these two points represemedodic
solution with period 2. The existence of periodic solutions
with periodK 7 (K=1,2,...) for aclass of nonlinear nonau-
tonomous oscillators was proven by Dieckerhoff and
Zehnder[29]. In the OPM representation, these particular
BOWL solutions would appear as invariant setadlistinct
points.

Now let us come to analytical estimates ®f based on
the expansior{10a. Essentially, we make use of this series
expansion in connection with identi{g). At each order inx
one needs the lower-order termgt) to calculate the result-
ing nested integrals. Then one choosesq_ as a free pa-
rameter, and determingg. as a function ofj_ through Eq.
(8) truncated at some order. For istance, at second order we
find

generates a vanishing solution, then the same will do every

point of S[z]. Thus, by definition, every s&, associated

with vanishing solutions is contained 8),. In other words,
we can locate at least some pointsS)f by finding a single

point on it, following the solution at discrete time steps. This

was done in Fig. @ (black point$ starting from ;=

—0.02263923;=0.0232694). As stated in Sec. VI, a suitable
starting point to plotS, can be found by looking at the

divergence of the correlation tim@&,.,. However, the

Qe =alqr]" 2r+a’Ly(y=DIr|? %,  (A2)

wherel ; comes from the insertion of the zero-order solution
g_f_(t):

L1=f dtju_(t)|7e 7, (A3)
1§

analysis of several OPM’s suggested us an alternative way to
locate the points 08,. We systematically observed the fol- and

Lzzf dte =2 yu_(t)|" 2u,
4

oo t ,
+f dte‘“’tlu_(wf dt'u ()] 2u. (t)u_(t)e 02,
4 t

(t)u,(t)Jtmdt’|u,(t')|7e—wt’

(A4)

u_(t) being the oscillating part of _(t). We have performed this calculation at the center of the first gap of the Mathieu

equation(20) (as in Fig. 2 obtainingL ;= 3.52 and_,=0.466 ¢;=0). At this stage, the results can be plotteddp, ;) space
on using the(nonsingulay linear transformation betweean. [Eq. (6)] and the initial conditions. In Fig. 3 this was done for
y=4 anda=1. It should be stressed that E&2) reproduces onlpnebranch of the “8-like” continuous curves of Fig. 3.

It is sufficient to time reverse Eqé8) and(9) (in the spirit of Secs. V and VI)ito obtain the specular equation;& —q;).
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