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Instability versus nonlinearity in certain nonautonomous oscillators: A critical dynamical
transition driven by the initial energy
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The equation of motionq̈1V2(t)q1auqug22q50 (g.2) for the real coordinateq(t) is studied, as an
example of the interplay between nonlinearity and instability. Two contrasting mechanisms determine the
behavior ofq(t), when the time-varying frequencyV(t) does produce exponential instability in the linear

equationq̈lin1V2(t)qlin50. At low energy, the exponential instability is the dominant effect, while at high
energy the bounding effect of the autonomous nonlinear term prevails. Starting from low initial energies, the
result of this competition is a time-varying energy characterized by quasiperiodic peaks, with an average
recurrence timeTpeak. A closed critical curveSv exists in the initial phase space, whose crossing corresponds
to a divergence of the recurrence timeTpeak. The divergence ofTpeak has a universal character, expressed by
a critical exponenta51. The critical curveSv is the initial locus of the solutions that vanish asymptotically.
A close relationship exists between this dynamical transition and the transition from mobile to self-trapped
polarons in one spatial dimension. The application to a number of physical problems is addressed, with special
attention to the Fermi-Pasta-Ulam problem and to transitions to chaos.
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I. INTRODUCTION

In a recent paper@1# the authors addressed the interpl
between nonautonomous and nonlinear effects forgeneral-
izedclassical oscillators, i.e., systems described by one
degree of freedomq(t), that move back and forth about
stable ~and unique! equilibrium position. The main resul
was as follows: for a wide class of generalized oscillato
with a time-dependent Hamiltonian, the presence of anau-
tonomousterm, diverging more than quadratically with th
coordinate, is a sufficient condition for the boundedness
all solutions. This result is especially relevant if one cons
ers the Hamiltonian

H lin5
p21V2~ t !q2

2
~1!

of a linear oscillator with a time-fluctuating square frequen
V2(t) @2#. In case~1!, there exist conditions ofexponential
instability ~EI!, such thatq(t) has anexponentially diverging
envelope exp(vt), with ratev.0 @1,3–5#. However, under
the same conditions, the Hamiltonian

H5H lin1
a

g
uqug5

p21V2~ t !q2

2

1
a

g
uqug ~g.2, a.0, ȧ50!, ~2!
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yields a bounded solution, even forarbitrarily small values
of the positive parametera. Therefore, the nonlinear term i
the equation of motion

q̈1V2~ t !q1auqug22q50 ~3!

cannot be treated as a perturbation, whenever EI condit
are satisfied by the linear part. In particular, the bound
function q(t;a) will approach an exponentially unstable s
lution nonuniformlyin time, whena tends to zero. Equation
~3! is actually the simplest possible case for studying
interplay between EI and nonlinearity in a nonperturbat
way.

In many physical cases, Eq.~1! can be regarded as a zer
order approximation, while Eq.~2! represents a natural gen
eralization, including higher-order terms. The example of
elastic horizontal bar, stressed by longitudinal time-vary
forces @4#, was used in Ref.@1# as a physical application
concerned with safety-control systems. Here we recall t
the interplay between EI and nonlinearity can address a n
ber of further applications, like thesqueezingof photons
@6–9# or phonons@10# and theconfinementof charged par-
ticles ~beams in accelerators@11–15# and Paul traps@16#!.
Hence the results of the present paper are relevant to m
physical problems, ranging from atomic-molecular to mac
scopic length scales. A possible application to the Fer
Pasta-Ulam problem@17,18# will be considered in Sec. IX.

From now on, it is explicitly assumed that the EI cond
tions are satisfied forH lin . In the next sections we study Eq
~3!, both analytically and numerically. The main results a
as follows:

~i! Vanishing and BOWL solutions: There are solutions
@denoted asqv(t)# thatvanishasymptotically, with envelope
©2001 The American Physical Society18-1
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exp(2vt). qv(t)’s are theonly possible vanishing solutions
The corresponding set of initial values (q̇i ,qi) is a closed
curve Sv in the phase-space plane. Apart fromSv , all the
solutions arebounded and oscillating without limit~BOWL
solutions!. The maximum energy achievable by the vanis
ing solutions isbounded from aboveby a valueE0. The
maximum energy achievable by the BOWL solutions
bounded from belowby a valueEinf.0. BothE0 andEinf are
independent from the initial conditions.

~ii ! BOWL solutions at low energy: If the initial energyEi
is small compared to a certain characteristic scaleEl , the
energy of the BOWL-solutions exhibits an almost period
sequence of peaks, centered around instants$Tn , n
51,2, . . .%. The peaks’ shape is well described by the e
pressionEMax expu2v(t2Tn)u, EMax being the maximum en
ergy attained. The mean value of the peak-to-peak recurre
time turns out to beTpeak>v21 ln(EMax /Ei), at low initial
energy.

~iii ! Critical dynamics: The behavior of the BOWL solu
tions is singular, when the initial conditions tend to any po
of the curveSv ~the initial locus of the vanishing solutions!.
The singularity isuniversal, and results in a divergence o
the peak-to-peak correlation timeTpeak. Therefore, the
BOWL-to-vanishing transition is a critical process, driven
the initial conditionszW i[(q̇i ,qi). The curveSv is the locus
of the ‘‘critical points’’ zWc of the transition. The quantityR
[uEi2Ecu/Ec can be taken as the ‘‘relevant field,’’Ec(zWc)
being any initial energy attained by a vanishing solution.
defining exp(vTpeak) as the ‘‘correlation length,’’ the ‘‘prin-
cipal critical exponent’’ of the transition turns to bea51,
i.e., exp(vTpeak)}R21.

~iv! BOWL solutions at high energy: If the initial energy
Ei is large compared to a certain characteristic scaleEh , the
fluctuating partV0

2j(t) of the square frequency

V2~ t !5V0
2@11j~ t !#, V0

25 lim
t→`

1

t2t i
E

t i

t

dt8 V2~ t8! ~4!

can be treated as aperturbation, and the solutionq(t) can be
expressed asq0(t)1O(j;t). The unperturbed partq0(t) sat-
isfies theautonomous, nonlinear equation

q̈01Veff
2 q01auq0ug22q050, ~5!

whereVeff
2 is an effective square frequency, to be determin

self-consistently. The symbolO(x;y) is used, here and in
what follows, to indicate a function vanishingat least lin-
early in x→0 and uniformly iny. Hence, in the high-energ
regime, the energy is conserved, apart from relatively sm
fluctuations just above the initial valueEi .

~v! Chronological humps and self-trapped polarons: The
equation of motion~3! can be mapped into the eigenvalu
equation for aquantum polaronin one spatial dimension. A
self-trappedpolaron is a quantum solution localized in spac
and vanishing exponentially at6`. The classical analog is
solution of Eq. ~3! that starts with zero amplitude att5
2`, attains a maximum amplitude at a finite time, then va
ishes again att51`. We call this solution of the nonlinea
02621
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oscillator@Eq. ~3!# a chronological hump. It is shown that the
BOWL solutions at low energy can be regarded as a
quence of ‘‘correlated’’ chronological humps. Accordingl
the BOWL-to-vanishing transition can be described as
infinite-scale correlation of the chronological humps. Due
the analogy between Eq.~3! and the quantum polaron prob
lem, the universal properties addressed in point~iii ! apply to
the mobile-to-self-trapped polaronstransition as well.

II. AN INTEGRAL REPRESENTATION OF EQ. „3…

If V2(t) satisfies EI conditions, the general solution f
Hamiltonian~1! can be written as

qlin~ t !5q1 f 1~ t !1q2 f 2~ t !, f 6~ t !5u6~ t !exp~6vt !,

ḟ 1~ t ! f 2~ t !2 ḟ 2~ t ! f 1~ t !51, ~6!

where the functionsu6(t) arebounded and oscillating with-
out limit ~BOWL functions!. The condition in the second line
~Wr51! is not necessary, but leads to some simplificatio
The two constantsq6 determine the arbitrary initial condi
tions for qlin(t). The Green-function method can be appli
to the linear part of Eq.~3!, by treating the nonlinear term a
a given function of time. This makes it possible to write t
equation of motion~3! in an integral form, whose solution
has the same initial conditions asqlin(t) at t5t i :

q~ t !5Fq12aE
t i

t

dt8 f 2~ t8!uq~ t8!ug22q~ t8!G f 1~ t !

1Fq22aE
t i

t

dt8 f 1~ t8!uq~ t8!ug22q~ t8!G f 2~ t !.

~7!

From now on, we assumet>t i , unless otherwise stated. O
multiplying both sides of Eq.~7! by exp(2vt), then taking
the limit t→`, the boundedness ofq(t) yields

q1[aE
t i

`

dt f2~ t !uq~ t !ug22q~ t ! ~identity!. ~8!

Note that expression~8! is just anidentity, not an equation.
In general, it doesnot determine a relation between the tw
constantsq6 , unless such a relation does exist indepe
dently. On re-expressing Eq.~7! in terms of Eq.~8!, one
obtains another equivalent form of the equation of motion
which the constantq1 is ~seemingly! eliminated:

q~ t !5q2 f 2~ t !1aE
t i

`

dt8 f~ t,t8!e2vut2t8uuq~ t8!ug22q~ t8!,

~9a!

where

f~ t,t8!5f~ t8,t !5H u1~ t !u2~ t8! for t<t8

u2~ t !u1~ t8! for t>t8.
~9b!
8-2
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The advantage of using Eqs.~9! instead of Eq.~3! is that the
former contain explicitly the new time scalev21, i.e., the
‘‘signature’’ of the EI in the linear oscillator@Eq. ~1!#. How-
ever, the integral equation~9a! doesnot determine, in gen-
eral, a unique solution, since the value of the integral on
right-hand side of identity~8! can be fixed by the arbitrary
constantq1 , independent ofq2 .

III. VANISHING SOLUTIONS

When looking for vanishing solutions of Eq.~3!, one
should first note that they are less and less sensitive to
nonlinear term, as time goes by. Asymptotically, one expe
to approach a solution proportional tof 2(t) @Eq. ~6!#. It is
not difficult to prove that the envelope ofany vanishing so-
lution is, necessarily, exp(2vt). Furthermore, the expressio
q2 f 2(t) must be approached in the limita→0 at any time.
Equation~9a! itself suggests the general structure of the v
ishing solutions. The integral term can indeed be treated
perturbation of the first term on the right-hand side. It
obvious that the resulting solution@that we denote asqv(t)#
will be asymptoticallyvanishing, with the same envelope
exp(2vt) as f 2(t) @Eq. ~6!#. We thus introduce an expansio
in powers ofa,

qv~ t !5q2 f 2~ t !1 (
n51

`

anqn~ t !, ~10a!

where, for example,

q1~ t !5uq2ug22q2E
t i

`

dt8f~ t,t8!e2vut2t8u

3u f 2~ t8!ug22f 2~ t8!. ~10b!

The constant

q15auq2ug22q2C2@11O~a;q2!#,
~11!

C2[E
t i

`

dtu f 2~ t !ug

@see Eqs.~10a! and~8!# is now determineduniquelyby q2 .
Accordingly, the set of initial conditionsSv corresponding to
theqv(t)’s is acurve, in the two-dimensional phase space
the oscillator. With the aid of Eqs.~6! and ~7!, one has

q̇v~ t i !5qv~ t i !~ ḟ 2 / f 2! t i
1q1 / f 2~ t i ! @ f 2~ t i !Þ0#, ~12!

and the curveSv reads, from Eq.~11!,

Sv[H zW i5~ q̇i ,qi !; q̇i5qiF ḟ 2~ t i !

f 2~ t i !
1a

uqi ug22

u f 2~ t i !ug

3C2@11O~a;qi !#G J @ f 2~ t i !Þ0#. ~13!

The quantityO(a;qi) originates from the power expansio
~10a!, and is defined only within a certain convergence
02621
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dius. We are not able to calculate this convergence radiu
general. However, in Sec. V we will show that the curve@Eq.
~13!# is a boundedset, under suitable conditions onV2(t).
This implies that the convergence radius of Eq.~10a! is fi-
nite.

IV. BOWL SOLUTIONS IN THE LOW-ENERGY REGIME

From the boundedness theorem proven in Ref.@1#, it fol-
lows that any solution of Eq.~3! is either a vanishing or
BOWL solution. Hence

SBowl5R22Sv ~14!

is the initial locus of the BOWL solutions. These are cha
acterized by the property

q`[ lim
t→`

sup
~ t,`@

$uq~ t !u%.0. ~15a!

Furthermore, one can always find amonotonically decreas-
ing function M such that

uq~ t !u,q`@11M ~ t2t i !#, lim
T→`

M ~T!50, M ~0!,`.

~15b!

In view of the discussion in what follows, letq5q(t;zW i)
express the dependence on the initial conditionszW i5(q̇i ,qi).
From Eq. ~15a!, there exists an unbounded sequence$tm%
such that limm→`uq(tm ;zW i)u5q`(zW i). For eachtm , Eqs.~9a!
and ~15b! yield

uq~ tm ;zW i !u<uq2 f 2~ tm!u1afME
t i

`

dtuq~ t;zW i !ug21e2vutm2tu

,uq2 f 2~ tm!u1afMuq`~zW i !ug21

3E
t i

`

dt@11M ~ t2t i !#
g21e2vutm2tu, ~16a!

where

fM[uf~ t,t8!uMax . ~16b!

On taking the limittm→` in Eq. ~16a!, it is seen thatf 2(tm)
vanishes, and the integral in the last term tends to 2v21, due
to properties~15b! of the functionM. Hence, recalling that
limm→`uq(tm ;zW i)u5q`(zW i), one is left with the following
lemma:

q~ t !5BOWL⇒q`~zW i !.S v

2afM
D 1/(g22)

[Q* . ~17!

SinceQ* is independent of the initial conditions, lemma~17!

has an important consequence. LetqMax(zW i)>q`(zW i) be the
maximum oscillator amplitude. Then

qMax~zW i !> inf
$zW i %

q` ~zW i !>Q* .0. ~18!

Or, equivalently, we have the following statement:
8-3
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Statement 1: Under the EI conditions, the maximum am
plitude qMax(zW i) and energyEMax(zW i) attainable by the
BOWL solutions of Eq.~3! are both limited from below by
strictly positive valuesqinf andEinf , independent of the ini-
tial conditions. It should be noticed that Statement 1 sim
expresses the existence ofqinf andEinf , whose explicit cal-
culation, however, is not trivial.

The existence of BOWL solutions witharbitrarily low
initial energy follows from Eq.~13!, ensuring that it is al-
ways possible to takezW i outside the curveSv , with uzW i u ar-
bitrarily small. We address such BOWL solutions with sp
cial interest, because the point 0W 5(0,0) in the initial phase
space is a special critical point for the BOWL-to-vanishi
transition. The critical nature of the limitEi→0 follows from
Eq. ~17! and Statement 1, claiming that the BOWL functio
uq(t;zW i)u must fit a valueQ* .0 independentof uzW i u, even in
the limit of vanishinguzW i u. This might look inconsistent with
the obvious requirement limuzW i u→0q(t;zW i)50 for eacht. The

solution of this apparent paradox is that in the limitEi→0
(uzW i u→0), the zero functionq(t;0W )50 is approachednon-
uniformly in t. Indeed, a solution starting with an arbitrari
small energy does initially behave likeqlin(t;zW i) @Eq. ~6!#. If
the solution is a BOWL solution, an exponentially increasi
envelope exp(vt) will certainly drive uq(t;zW i)u toward the
nonlinear regime, and make the amplitude fit the valueQ*
the first time at the instantT* (zW i). What happens is that th
shortest timeT* (zW i) for fitting Q* does diverge in the limit
of small initial energy, i.e., limuzW i u→0T* (zW i)5`.

An energy scaleEl determining the low-energy regim
for the initial energyEi can be obtained as follows. For th
system to behave, initially, as a linear oscillator, the ene
Ei must be small compared to the nonlinear energy aq
5Q* . Hence, from Eq.~17!, the low-energy regime can b
determined by the condition

Low energy: Ei!El[
1

g S v

2fMa2/gD g/(g22)

. ~19!

In order to test the validity of the preceding argumen
we have numerically solved@19# the nonlinear Mathieu
equation, characterized by a cosine fluctuating frequency

V2~ t !512j cosS 2pt

t D . ~20!

We have fixedt i50, g54, andj51021 and tuned the pe
riod t in order that the EI conditions are satisfied in t
‘‘gaps’’ of Eq. ~20! @20#. The result reported in Fig. 1~a!
shows that, in the low-energy regime, the BOWL solution
energy exhibits a peaklike envelope. The maximum ene
EMax(zW i), attained by the oscillator at the peaks’ top, can
studied as a function ofzW i , by passing to a polar coordinat
system (Ei ,u i), in which the angle is measured from theq̇i

axis andEi essentially measuresuzW i u2. Figure 1~b! shows that
02621
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lim
uzW i u→0

EMax~zW i !5E0.0 independent ofu i , ~21!

i.e., the limiting energyE0 is independent of the initial con
ditions. We have evaluatedE0 numerically for different
choices ofa, performing the calculation both for the first an
for the second gap of Eq.~20!. The estimateaE0 /v.2.66
~with a deviation in the last significant digit! suggests
that, for g54, a convenient scaling quantity should b
a3energy3v21. While the dependence ona is fully justi-
fied on the basis of straightforward scaling arguments~Ref.
@21#, p. 61!, the dependence onv is not as easy to find. From
Eq. ~19! one can introduce a nonuniversal (v-dependent!
proportionality factor« through

FIG. 1. ~a! Time evolution of the energy of a BOWL solutio
with Ei5531027 and u i50 ~low-energy regime!. ~b! EMax vs
ln Ei for various choices ofu i . EMax is calculated on averaging th
values of all the maxima observed during the different evolutio
and the corresponding standard deviation is always within the s
bols size. The arrow on the left indicates the numerical estim
E056.6631022, and the dashed lines are guides for the eye.
lected values area51 andt53.145029~the center of the first gap
having an exponential ratev52.4975731022). Here and in the
next figures, all quantities are dimensionless.
8-4
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E05
«

g S v

2fMa2/gD g/(g22)

@El . ~22!

For g54, the numerical data reported in Fig. 1 yield«
>1.713103.

The detailed shape of the peaks, reported in Fig. 2~a!,
shows that the expressionEMax exp(22vut2Tnu) fits the nu-
merical data very well, except in a small intervalDtnl , just
around the peak’s top. Furthermore, the recurrence of pe
is almost periodic, i.e.,Tn5nTpeak1dTn , with udTnu
!Tpeak. The average periodTpeak is studied in Fig. 2~b! as a
function of Ei andv. The expression

Tpeak5v21 ln~EMax /Ei ! ~low energy! ~23a!

FIG. 2. ~a! Detail of the first peak of Fig. 1~a!: The natural
logarithm of the energy normalized toEMax56.66631022 is plot-
ted vs the timet, aroundT15262.6. The dashed straight lines re
resent left- and right-hand best fitsAL,Rt1BL,R . The slopesAL,R

56531022 and the offsetsBL5212 andBR513 confirm~with
an error,10%) the exponential shapeEMax exp(22vut2T1u). ~b!
vTpeakvs ln(aEi) for u i5p/2 and for two choices ofa. The value
of Tpeakis calculated as twice the distance between the first peaT1

and t i50 ~this is correct because at low energies the energy en
lope starts essentially in a minimum!. The straight lines represen
the two best fits, and the overall universal behavior can be sum
rized asvTpeak.b2a ln(aEi), with b521.460.1 anda51.00
60.01. The periodt has the same values as in Fig. 1.
02621
ks

also fits the numerical data well, in the low-energy regim
@Eq. ~19!#. From Eq.~21!, it is immediately seen that

lim
Ei→0

Tpeak~Ei !5v21 lim
Ei→0

ln~E0 /Ei !5`, ~23b!

i.e., the average period spanning the exponential peaks
vergeslogarithmically in the limit of vanishing initial en-
ergy.

The numerical results just described can be interpreted
a physical ground. If the initial energy is low@Eq. ~19!#, the
oscillator spends most of the time in the linear regime
scribed by Hamiltonian~1!. This explains the exponentia
shape of the peaks, which is clearly due to the assumed E
the time intervalsDtnl , just around the top of the peaks, th
nonlinear term has a highly nonperturbative effect, switch
the oscillator from an exponentially increasing compon
f 1 of the linear motion, to an exponentially decreasing on
f 2 . Hence the oscillator switches between alternate p
cesses of absorption and dissipation of the energy. I
clearly seen that the energy does increase on average to
above the initial value. IfDtnl!Tpeak, the process of absorp
tion and dissipation of the energy is almost periodic. In fa
the exponential increase of the energy’s envelope fromEi to
EMax is rapidly followed by asymmetricalexponential de-
crease fromEMax to Ei , that takes about the same time. Th
the results of Eqs.~23! follow from the equationEMax

5Ei exp(vTpeak), on assuming that the valueEMax}qMax
2 is

attained in an essentially linear regime.
We conclude the present section by stressing that the

iting valueE0 @Eq. ~22!# is an important quantity for practi
cal applications concerned with thecatastrophicbehavior of
certain macroscopic systems described by Eq.~3! ~for ex-
ample, the horizontal elastic bar with longitudinal tim
varying forces!. Such systems are characterized by an ene
scaleEirr , marking the onset of someirreversible process
~viscous flow, fracture, etc.!. SinceE0 is the maximum en-
ergy attained by a BOWL solution in the limit ofvanishing
initial energy, the conditionE0!Eirr ensures that the system
is always in a ‘‘safe’’ regime, even if some external influ
ence does slightly remove it from the equilibrium state.
stead, the conditionE0'Eirr corresponds to a ‘‘dangerous
regime, in which even an arbitrarily small deviation from th
equilibrium state can produce catastrophic effects. It sho
be noticed that the safety~or nonsafety! condition, expressed
in terms ofE0, is an intrinsic property of the system, sinc
E0 doesnot depend on the initial conditions.

V. TIME REVERSAL AND THE BOUNDEDNESS OF Sv

In Sec. III, a question was left open, concerning t
boundedness of the curveSv @Eq. ~13!#. The results of Sec
IV can now be used to make the following statement:

Statement2: If V2(2t)[V rev
2 (t) satisfies the same E

conditions asV2(t), and yields the same exponential ratev,
thenSv is a bounded set of the initial phase space. Equi
lently, the convergence radius of the series expansion~10a!
for the vanishing solutions isfinite. Furthermore, the initial
energy of the vanishing solutions on the curveSv is bounded
from aboveby the valueE0 @Eq. ~23!#.

e-

a-
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One should note that the condition onV2(t) underlying
statement 2 is actually very weak. The simplest way
implement the EI conditions is to takeV2(t) as a BOWL
function. If its fluctuations arerandomthe exponential insta
bility in Eq. ~1! is ensured, regardless to the amplitude of
fluctuations themselves~see, for instance, Ref.@5#!. In the
case ofperiodicity, the EI conditions involve the averag
square frequencyV0

2 @Eq. ~4!# and the period of the fluctua
tion itself, but not the sign of the time@1,3,4#. In these two
relevant cases, it is clear that passing fromV2(t) to
V2(2t) has no influence at all on the EI conditions and
the exponential rate.

In order to prove Statement 2, let us apply the tim
reversal transformation to Eq.~3!, on settingqrev(s)5q
(2t), s52t. It is clear that the motion equation forqrev(s)
remains the same as Eq.~3!, with the new square frequenc
V rev

2 (s). Thoughqrev(s) is not in general a solution of the
equation of motion~3!, the assumed properties ofV rev

2 (s)
make it possible to extend the results of the preceding
tions to qrev(s) too. In particular, letqrev(s) be a BOWL
solution with an arbitrarily small initial energyEi at s i ,
attaining the maximum energyEMax at S1. If we assumeS1

as the new initial time and takeqrev(S1), 2q̇rev(S1) as the
new initial conditions, thenqrev(2s)5q(t) is a solution of
Eq. ~3!, whose energy decays~exponentially! from EMax to
Ei . Therefore, in the limitEi→0, q(t) becomes avanishing
solution, with maximum energyEMax→E0, as shown in Sec
IV. The initial conditions for qrev(s) are arbitrary, apart
from taking Ei smaller and smaller. Hence the precedi
argument can be applied to constructanyvanishing solution.
This leads immediately to the Statement 2. In particular,
implies that the solutions are necessarily BOWL solutions
Ei.E0. Therefore, the nonlinear term in Eq.~3! acts as a
limiting mechanism both for the energyadsorbedfrom the
environment and for the energydissipatedinto the environ-
ment.

The analytical construction of the curveSv , based on
Eqs.~10a! and~13!, is far from easy. In Sec. VI we will use
the critical properties of the BOWL-to-vanishing transitio
to implement the numerical calculation ofSv .

VI. CRITICAL DYNAMICS: BOWL-TO-VANISHING
TRANSITION

A critical process is usually related to the divergence o
certain ‘‘correlation length’’ characteristic of the system.
the case of the BOWL-to-vanishing transition, such a cor
lation length is related to the~average! recurrence timeTpeak
between the peaks of the BOWL solutions~Sec. IV!. A spe-
cial example has been already given by Eq.~23b!, showing
that the recurrence time does actually diverge logarithmic
when the BOWL solutions approach the special vanish
solutionqv(t)50. However, it is clear that the divergence
Tpeak is not limited to the caseEi→0. If a BOWL solution
does approach a vanishing solution, itsminimum energy
must vanish. On taking the initial time in this minimum, th
fundamental Statement 1 ensures that the next maximum
be split off by larger and larger time intervals. Hence t
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divergence ofTpeakis a general feature of the transition. Th
provides a method for constructing the curveSv of the initial
points of the vanishing solutions, starting from the BOW
solutions. In fact, we can now writeSv as follows:

Sv5$zWc ; lim
zW i→zWc

Tpeak~zW i !5`%. ~24!

There is a practical convenience in adopting Eq.~24! for
numerical calculations. In fact, due to the finite precision
the machine, it is virtually impossible to find the exact initi
conditions for the vanishing solutions, and draw the curveSv

directly. In practice, all numerical calculations yield, aut
matically, BOWL solutions, if extended to sufficiently lon
times.

A general problem in the numerical study of the critic
transitions, is to make theuniversalproperties emerge in a
clear way. If the critical points are not known exactly, th
may be a quite difficult task. In the present case, howev
the preceding arguments suggest that theexact critical be-
havior of Tpeak is

Tpeak~Ei !5T0~Ec!1v21 lnS Ec

uEi2Ecu
D ~Ei→Ec! ~25!

if Ec is any finite energy on the critical curveSv . Equation
~25! is just a generalization of Eq.~23b!. It is customary to
express the universal properties of a critical transit
through a ‘‘critical exponent’’a expressing the divergence o
some physical quantity, when the ‘‘relevant field’’R ap-
proaches a critical valueRc . A suitable rescaling can be use
to setRc50. On definingR[uEi2Ecu/Ec , Eq. ~25! yields

exp~vTpeak!}R2a, a51. ~26!

The ‘‘principal critical exponent’’ of the BOWL-to-
vanishing transition is thereforea51, if we define
exp(vTpeak) as the ‘‘correlation length.’’

For the nonlinear Mathieu equation~20!, the numerical
construction of the curveSv is reported in Fig. 3~a!. The
method based on Eq.~24! is useful to locate the points ofSv

with any required precision. However, if the square fr
quency isperiodic@V2(t)5V2(t1t)#, a more rapid method
can be used to obtain a rougher estimate ofSv from which an
accurate calculation can be started@Fig. 3~b!#. This method is
described in the Appendix. In Fig. 3~a! we also report two
analytical evaluations, performed at first and second orde
the series expansions~10a! and~13!. It is seen that the agree
ment between numerical and analytical results actually
proves with increasing order of approximation. However,
small improvement from first to second order, indicates t
the convergence of the series is probably very slow. As
pected from Statement 2, the curveSv is bounded and sym
metric with respect to the axis. In fact, the square freque
8-6
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in Eq. ~20! is an evenfunction of the time, so thatV rev
2 (t)

5V2(t). In Figs. 4~a! and 4~b!, the numerical check of Eqs

~25! and ~26! is reported, close to some critical pointszWc

Þ(0,0). The results obtained on the BOWL-to-vanishi
transition can be now summarized as follows, in the la
guage of critical phenomena.

~A! The transition is characterized by the logarithmic
vergence of the peak-to-peak recurrence timeTpeak. The

‘‘critical points’’ zWc are the initial conditions yielding van
ishing solutions, that form aclosedcurveSv @Fig. 3~a!#.

~B! The divergence ofTpeak is universal. ChoosingR
[uEi2Ecu/Ec as the ‘‘relevant field’’ of the transition, one
sees that the divergence of exp(vTpeak) is characterized by a
‘‘critical exponent’’ a51 @Figs. 2~b!, 4~a! and 4~b!#. The
quantity exp(vTpeak) can be regarded as the ‘‘correlatio
length’’ of the system.

Another simpler way to look at the BOWL-to-vanishin
transition follows from using the quantity

FIG. 3. ~a! Construction ofSv in the initial phase space. Point
represent numerical values. The outer and inner lines are first-
second-order approximations based on expansion~10a!, respec-
tively. Selected values fora andt are the same as in Fig. 1. Ope
circles indicate the three critical points considered in Figs. 4 an
~b! An alternative numerical method, based on one-period m
~OPM’s!. For details, see the Appendix.
02621
-
E`~zW i ![ lim

t→`

sup
~ t,`@

H„p~ t;zW i !,q~ t;zW i !,t… ~27!

as the ‘‘marker’’ of the transition. From the fundament
Statement 1, one immediately obtains the following prope

~C! The upper limitE`(zW i), of the energy in the interva
(t,`@ for t→`, has a finite-jump discontinuityDEjump
>Einf at the transition.

In fact, Statement 1 ensures thatE`(zW i)>Einf.0 for each
zW iPSBowl . In particular, one hasE`(zW i)>Einf even if zW i ap-
proacheszWcPSv from SBowl . However, it is obvious from
definition ~27! thatE`(zWc)50, sincezWc is the initial point of
a vanishing solution.

nd

6.
s

FIG. 4. ~a! and~b! Numerical tests of Eq.~27! about pointsA, B,
andC of Fig. 3, respectively. Plot~a! has been obtained on varyin

qi at fixedq̇i50 ~point A). Plot ~b! has been obtained on varyingq̇i

at fixedqi560.19809~pointsB andC). In both cases~a! and~b!,
the linear slope is slightly larger than 1 forEi.Ec , and slightly
smaller than 1 forEi,Ec . However the mean slope is justa51,
within the errors. We have checked that this compensation ef
stems from the evaluation ofEc , and can be reduced by tuningEc

more and more exactly. Selected values fora andt are the same as
in Fig. 1.
8-7
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VII. HIGH-ENERGY REGIME

The boundedness theorem proven in Ref.@1# has an im-
portant consequence on the high-energy treatment of Eq.~3!.
Since the autonomous term ensuring the boundednes
verges more than linearly with the coordinate, the nonau
nomouslinear term is relatively small when the oscillato
amplitude~energy! is large. Therefore, when the amplitude
large~small velocity!, the time variation ofV2(t) is a small
effect. However, when the amplitude is small, thevelocity is
large, which implies a short action time of the nonauton
mous term and anadiabatic effect resulting from the time-
variation of V2(t). From what we have seen above, in t
high-energy regime the solutions of Eq.~3! are characterized
by a frequency of oscillation large compared to themaximum

rate of changenMax5uV̇(t)/V(t)uMax . In contrast to the low-
energy case, the oscillator now spends most of its time
nonlinear regime, with a practically constant linear te
Veff

2 q ~adiabatic effect!. The remaining linear part@V0
2
„1

1j(t)…2Veff
2 #q acts just as a perturbation~small effect!. A

nontrivial problem is that the effective square frequen
Veff

2 , yielding the adiabatic effect, is an unknown of th
problem, to be found self-consistently. The unperturbed
lution, oscillating with large frequency, is therefore given
Eq. ~5!. An energy scale determining the high-energy regi
can be found self-consistently. LetVnl(Ei) be the frequency
of the solution of the unperturbed equation~5!. Since the
equation is nonlinear,Vnl(Ei) is an increasing function o
the energyEi . The high-energy condition readsVnl(Ei)
@nMax , or, equivalently,

High-energy: Ei@Eh , Vnl~Eh!5nMax . ~28!

Under condition~28!, one expects that the exponential ins
bility of the linear Hamiltonian~1! is quite marginal~while it
was crucial in the low-energy regime!.

According to Eqs.~4! and~5!, we introduce a perturbation
series

q~ t !5q0~ t !1 (
n51

`

qn@j,t#, ~29!

where now theqn@j,t# ’s are nth-order functionalsof j(t),
explicitly depending on the time. A recurrence integral re
tion does actually connectqn to the lower-order terms. In
particular,

q1@j,t#52V0
2E

t i

t

dt8 C~ t,t8!q0~ t8!j~ t8!

1~Veff
2 2V0

2!E
t i

t

dt8 C~ t,t8!q0~ t8!. ~30!

The kernelC(t,t8)5g1(t)g2(t8)2g2(t)g1(t8) in Eq. ~30!
is expressed in terms of two independent solutions of
linear equation

g̈1@Veff
2 1a~g21!uq0~ t !ug22#g50, ~31!
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such thatġ1(t)g2(t)2ġ2(t)g1(t)51. Iterating this proce-
dure to higher orders is a complicated task in general. For
momemt, we wish to stress that the first term in the left-ha
side member of Eq.~30! is a linear functional ofj(t). If j(t)
is a random-varyingfunction of time, this term will intro-
duce a chaotic element in the high-energy dynamics. T
remark is important for the discussion on the transition
chaos~Sec. IX!.

From the above, one expects that, at a high initial ener
the oscillator energy remains almost constant during the t
evolution, with fluctuations of orderj(t). To see this, we
rely on the canonical perturbation theory@22#. We separate
the complete nonautonomous Hamiltonian~2! into an au-
tonomous, nonlinear part

Hanl5
p2

2
1V0

2 q2

2
1

a

g
uqug, ~32!

plus a fluctuating perturbationV0
2j(t)/2q2. The aim is to

find, order by order, a canonical transformation to the acti
angle variables (J,q) such that the new Hamiltonian de
pends only onJ. In this way,J is a conserved quantity~an
invariant!, andq evolves linearly in time, with rate]H/]J
~if H is the new Hamiltonian at the order of interest!. Even at
first order, the Fourier coefficients of the generating funct
of the canonical transformation are affected by the probl
of the ‘‘secularities,’’ namely, the existence of small denom
nators typical of nonlinear problems. Special techniques
avoid the divergence of the perturbative terms have b
developed. In particular, here we recall theglobal removal of
resonances@22#, and a recent method proposed by Lewis a
co-workers@23,24# specifically constructed within the invari
ant theory. It is the removal of the secularities that leads
to introduce an effective self-consistent frequencyVeff , as in
Eqs.~5!, ~30!, and~31!, essentially driving the denominator
out of the resonance conditions.

The explicit form of the first-order results~Hamiltonian,
action, frequency, etc.! depends on the Fourier coefficients
the perturbation and on the zero-order action-angle variab
In Appendix C of Ref.@21# these are worked out~for eveng!
in terms of generalized Jacobi elliptic funtions. In the ca
g54, one deals with standard Jacobi functions@25#. The
relationship between the old action and the new action-an
variables is given in Eq.~4.26! of Ref. @21# for a generic
periodic frequency fluctuation. In the special case of
Mathieu problem@Eq. ~20!#, the time evolution of the zero
order actionJ0 can be written in terms of a first-ordercon-
servedactionJ,

J0~ t !5J2jAF~ t !, ~33!

whereA measures the effective strength of the perturbat

A5
2Hanl~12k!uQ~2k!u

kK2~2k!V0
2

pt

v221
, ~34!

and
8-8
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F~ t !5
v21

2
cos@2q i1v̄~v11!t#

1
v11

2
cos@2q i1v̄~v21!t#,

~35!

v̄5
2p

t
.

In Eq. ~34!, K indicates the complete elliptic integral of th
first kind andQ(2k)5exp@2pK(11k)/K(2k)# @25#, with

k5
AV0

414aHanl2V0
2

AV0
414aHanl1V0

2
. ~36!

In Eq. ~35!, q i denotes the initial first-order angle, th
evolves with the nonlinear frequency

Vnl5
V0

A12k

p

2K~2k!
. ~37!

Equation ~37! also determines the parameterv5tVnl /p.
The relationship betweenJ0 andHanl(p,q) turns out to be

J05
4Hanl

3V0p
A12k

~11k!K~2k!2~12k!E~2k!

k
,

~38!

whereE is the complete elliptic integral of the second kin
@25#. From Eqs.~38! and ~33! it is seen that the oscillato
energy is almost constant, with small oscillations of ordej
~see Fig. 5!. Moreover, from Eq.~35! it follows that these
oscillations have a quasiperiodT̃5t/(v21), where the two
cosines in Eq.~35! have a maximum constructive interfe
enceFMax.v.

FIG. 5. High-energy fluctuations of a BOWL solution. Select
values fora andt are the same as in Fig. 1.
02621
VIII. A QUANTUM ANALOG OF EQ. „3…:
CHRONOLOGICAL HUMPS AND SELF-TRAPPED

POLARONS

The stationary Schro¨dinger equation

1

2

d2c

dx2
1@e2V~x!#c1

a

2
ucug22c50 ~m5\51!

~39!

is formally equivalent to Eq.~3!, if the time is read as a
spatial coordinatex, andq(t) is replaced by the wave func
tion c(x). The average valueV0

2 of the square frequency
@Eq. ~4!# plays the role of~twice! the energy eigenvaluee,
and the fluctuating part ofV2 then becomes an external po
tential. The nonlinear term can in turn be read as anattrac-
tive potential energy multiplied by the wave function. In E
~39! the attractive energy is a homogeneous function of
probability density of the quantum particle, i.e., the partic
is assumed to undergo a sort of self-attraction. This mod
system is actually well known in condensed matter phys
@26#. It describes a charged particle~the polaron! in a
strongly polarized medium, approximated by a uniform ‘‘je
lium.’’ The potential energyV(x) can be regarded as th
nonpolarized part of the host lattice. For example, ifV2 in
Eq. ~3! is periodic, its quantum analog@Eq. ~39!# describes a
polaron in a one-dimensionalcrystalof nonpolarized objects
If c(x) vanishes to6`, one has the so-called ‘‘self-trappe
polaron.’’

The notion of self-trapped polaron can be applied to E
~3! too, by extending the definition ofV2(t) to any t,t i .
The integral form of Eqs.~9! can indeed be ‘‘time reversed,’
under the weak conditions underlying Statement 2. The
fore, an expansion like Eq.~10a! can be found even for a
solution vanishing att52`. The matching of the two van
ishing branches att i determines in general isolated points
the initial phase space, which are functions ofV0

2. The nor-
malization of the solution would finally solve the eigenval
quantumproblem forV0

2. In theclassicalproblem, however,
no normalization is required, andV0

2 is a fixed arbitrary
quantity. The above simply outlines the existence of spe
initial conditions att i , such that the solution has zero amp
tude att52`, increases exponentially~in envelope! up to a
maximum, then vanishes again att51`. We call this solu-
tion a ‘‘chronological hump,’’ to distinguish it from the self
trapped polaron. We stress that the existence of chronol
cal humps forV0

2.0 is far from trivial, and is closely related
to the fluctuatingpart of the square frequency. To see th
the quantum analog@Eq. ~39!# is again convenient. IfV(x)
50, in fact, the energy eigenvaluee of the self-trapped po-
laron would be certainlynegative. The positive part of the
spectrum would correspond to plane-wave states~mobile po-
larons! only. However, ifV(x) is periodic, the spectrum in
the absence of the self-attracting term is characterized
‘‘gaps’’ of finite width, spanning the ‘‘bands’’ of allowed
energy values~the Bloch theorem!. Gaps exist above any
arbitrarily largepositivevalue of the energy. At this stage
the self-attractive term can be regarded as a ‘‘defect’’ in
8-9
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C. DEGLI ESPOSTI BOSCHI AND L. FERRARI PHYSICAL REVIEW E63 026218
crystal. The typical effect of a defect in a band-spectrum is
produce localized levels in the gaps. This explains wh
fluctuatingV(x) in Eq. ~39! may yield self-trapped polaron
even in thepositivepart of the spectrum. Coming back to th
classical problem, we can conclude that, forj(t)50, a chro-
nological hump can exist only ifV0

2,0. Then, in the case
V0

2.0, anonzerotime fluctuation of the square frequency
a necessarycondition for the existence of chronologic
humps.

The chronological humps are closely related to
BOWL-to-vanishing transition studied in Sec. VI. To s
this, let us consider a BOWL solution at low energy~Sec.
IV ! and the centerT1 of the first peak@Fig. 2~a!#, in which
the energy attains the maximum valueEMax . For t.T1, the
energy decreases exponentially for a time interval com
rable withTpeak/2. Taking smaller and smaller values of th
initial energy, we have seen that bothT1>T* (zW1) andTpeak
become diverging large@Eqs.~23!#, while EMax tends toE0.
If we ‘‘follow’’ the peak’s shift to 1`, we find a limit
solution vanishing in both directions of time~now referred to
as T1) and attaining a maximum energyE0. A solution of
this kind is nothing but a chronological hump. Hence,
Ei→0, it is seen that the divergence ofTpeak is also respon-
sible for the appearance of a chronological hump, wh
center ‘‘runs away’’ to infinity. In order to see the chron
logical humps at afinite time, one simply has to approach th
critical curveSv in any pointzWcÞ(0,0), and study Eq.~3!
and its time-reversed form. In Fig. 6, we show the numeri
results obtained in three different critical pointszWcÞ(0,0).
The data refer to the energy of the solutions in both dir
tions of time. It is clearly seen that the complete solutions
chronological humps, whose maximum energyE0 is attained
at different finite times ~in the past or in the future, with
respect tot i), depending on the critical initial pointzWc . In
particular, Fig. 6~a! shows the chronological hump attainin
its maximum energy just around theinitial time.

The BOWL-to-vanishing transition can be now inte
preted in a more physical way. The peaks described in S
IV at low energy can be regarded as ‘‘correlated’’ chron
logical humps. The transition simply shifts the chronologic
humps apart, leaving just one at a finite time, ifzWcÞ(0,0), or
leaving none, ifzWc5(0,0). The time scaleTpeak is actually
the correlation time between the chronological humps.

Due to the analogy between Eqs.~3! and Eq.~39!, these
results are relevant for the polaron problem too. In particu
all the universal aspects of the BOWL-to-vanishing tran
tion ~Sec. VI! can be now extended to the transition fro
mobile to self-trappedpolarons in one spatial dimension.

IX. CONCLUSIONS

The present paper addresses a special case of gener
oscillator, in which the nonautonomous force islinear, with
a time-fluctuating strength, while theautonomousforce in-
creases more than linearly with the amplitude@Eqs. ~1! and
~3!#. Interest in this problem comes from the interplay b
tween two contrasting mechanisms: the bounding effec
the nonlinear autonomous term@1#, and the exponential in
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stability ~EI! produced by time fluctuations of the linea
strength under suitable conditions~EI conditions!. If the ini-
tial energyEi is large enough, the fluctuating part of th
strength can be treated as a perturbation~Sec. VII!. The re-
sulting solutions arebounded and oscillating without limi

FIG. 6. Evolution, in both directions of time, of the energy
three chronological humps with different initial conditions att i

50. ~a!, ~b!, and~c! refer, respectively, to pointsA, B, andC in Fig.
3. Selected values fora andt are the same as in Fig. 1. Note th
shifting to the future~b! and to the past~c! of the hump center, with
respect to the hump centered about the initial instant~a!.
8-10
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INSTABILITY VERSUS NONLINEARITY IN CERTAIN . . . PHYSICAL REVIEW E63 026218
~BOWL!, and their energy is conserved, apart from relativ
small fluctuations~Fig. 5!. EI conditions play no essentia
role in this case.

The situation drastically changes ifEi is small enough. In
this case, EI conditions turn out to be crucial. First, th
produce solutions that vanish exponentially in time~Sec. III!,
whose initial values lie on a closed curveSv of the initial
phase space~Sec. V!. The analogy between Eq.~3! and the
quantum polaron in one dimension@Eq. ~39!#, leads one to
introduce thechronological humpas a classical counterpa
of the self-trapped polaron~Sec. VIII!. A chronological
hump is a solution of Eq.~3! that vanishes exponentially i
both directions of the time.

In the low-energy sector~Sec. IV!, an alternate
absorption-dissipation process characterizes the energy o
BOWL solutions, leading to an almost periodic sequence
peaks, with about the same maximum energyEMax . A cru-
cial point is thatEMax is a function of the initial energyEi
bounded from belowby a strictly positive valueEinf . The
average periodTpeak(q̇i ,qi), spanning two successive peak
is a new characteristic time scale determined by the in
conditions and byv @Eqs.~23b! and~25!#. The quantityv is
just the exponential rate of theunstablesolutions of the lin-
ear problem Eq.~1!.

The initial locusSv of the vanishing solutions is acritical

curve in the initial phase space of pointszW i5(q̇i ,qi). Moving
on a line of initial points connecting BOWL solutions ou
side and insideSv , it is shown thatTpeak diverges at the
intersection point withSv . This is what we call theBOWL-
to-vanishingtransition. The transition has a universal cha
acter expressed by a ‘‘critical exponent’’a51, and can be
regarded as the passage from a sequence of ‘‘correla
chronological humps~BOWL solutions!, to a single chrono-
logical hump. The larger the time scaleTpeak, the larger the
degree of correlation. It is likely that the critical transitio
just outlined is also associated with the divergence of
high-energy series expansion@Eq. ~29!# along the curveSv .
Actually, the existence of a critical boundary between ‘‘i
ner’’ and ‘‘outer’’ BOWL solutions suggests that the dynam
ics is basically different inside and outsideSv . An indication
of this possibility is given in the Appendix.

In Sec. I, some physical applications of the present res
were outlined. Now we briefly discuss a further one, i.e.,
Fermi-Pasta-Ulam~FPU! problem@17,18#.

The FPU problem is a many-bodyautonomousproblem,
with linear and nonlinear couplings among first-neare
neighbor particles, regularly distributed on a chain. Introd
ing the amplituesAk(t) of the modes with wave vectork, one
obtains a system of nonlinear equations, with allconstant
coefficients:

Äk1Vk
2Ak1a2 (

k1 ,k2

Ck,k1 ,k2
Ak1

Ak2
1•••

1am (
k1 , . . . ,km

Ck, . . . ,km
Ak1

•••Akm
50. ~40!

Despite the fact that Eq.~3! is basically different from the
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differential problem of Eq.~40!, there are some remarkab
analogies in the results. First, at high initial energy, the
ergy of each FPU mode fluctuates about the initial value
like the energy@Eq. ~2!, Fig. 5#. At low-energy, a peaklike
structure is obtained, with a quasiconstantrecurrence time
Trec

(k) spanning the peaks. This looks very similar to the resu
obtained in Sec. IV@Fig. 1~a!#, in terms of the average perio
Tpeak. The low-to-high energy transition in the FPU proble
is a famous example oftransition to chaos@18#. To the au-
thors’ knowledge, the nature~smooth or critical! of this tran-
sition is still an open question. In the present case, the re
of Sec. VI points to a critical transition.

There are motivations suggesting that the analogies
mentioned arenot casual. Indeed, one possible approach
the FPU problem is transforming the system~40!, of
autonomous-coupledequations, into a set ofdecoupled non-
autonomousequations. A method was suggested, leading
decoupledlinear equations, including a time-dependent for
ing, a renormalized linear frequency and an autonomous f
tion term @27,28#. Our approach is more closely concern
with the non-linear structure of Eq.~40!. On extracting terms
depending explicitly onAk , we write Eq.~40! as follows:

Ä1@Vk
21Dk

(1)~$Ak8%k8Þk!#Ak1Dk
(2)~$Ak8%k8Þk!Ak

21•••

1Dk
(m21)~$Ak8%k8Þk!Ak

m211GkAk
m5Fk~$Ak8%k8Þk!,

~41!

where the coefficientsDk
( j )’s and the driving forceFk depend

on time through the other variables$Ak8%k8Þk , while the
highest-order coefficientGk5amCk,k, . . . ,k is constant. Our
suggestion is to look for a self-consistent approximation
placing theDk

( j )’s and Fk with suitable time-varying func-

tions D̄k
( j )(t) and F̄k(t). For g215m integer andodd, the

effective equation resulting from Eq.~41! would be

Äk1@Vk
21D̄k

(1)~ t !#Ak1•••1D̄k
(g22)~ t !Ak

(g22)

1GkAk
(g21)5F̄k~ t !. ~42!

This is a generalization of Eq.~3!, including time-varying
nonlinear terms of lower order, and a time-dependent fo
ing. Now, let us assume the same ansatz as in Refs.@27,28#,
i.e., that the mode-mode coupling should producerandom
time-dependent fluctuations in the effective equations. If
we expect that the fluctuating partD̄k

(1)(t) of the square fre-
quency is random too. As already discussed in Sec. V, th
a sufficient condition for the EI, independent of the value
Vk

2 . One should note that fitting the EI condition is cruci
for the relationship between Eq.~3! and the FPU problem. In
fact, it is the EI condition that produces the peak-to-pe
recurrence time and all the analogies stressed above. A
ther important point is that the quasiperiodicity of the pea
in Fig. 1~a! is not due to the periodicity of the frequenc
fluctuation. In fact, Eq.~23a! shows that the average perio
Tpeak depends essentially on the initial energy and on
exponential ratev. A random fluctuation is thus expected
8-11



a

y

o
ch
o

e

is

le

y
l-

u-

-
iel-
us

s

rn

.

s
-
nd
lar

es

r we

on

C. DEGLI ESPOSTI BOSCHI AND L. FERRARI PHYSICAL REVIEW E63 026218
yield quasiregular recurrence times, simply because it alw
produces a nonvanishingv. At high energy, instead, the
lowest-order approximation@Eq. ~30!# shows that the energ
fluctuations are influenced by the same randomness
V2(t). Hence the dynamical equation~3! is an example of a
random-varyingparameter@V2(t)#, producing anonchaotic
response at low initial energy, and achaotic one at high
energy. This suggests that the interplay between EI and n
linearity studied in the present paper could be a basic me
nism underlying one of the most debated questions in m
ern classical physics, i.e., the transition to chaos.

APPENDIX: NUMERICAL AND ANALYTICAL LOCATION
OF Sv IN THE PERIODIC CASE

If q(t) is a solution starting fromzW i5(pi ,qi) at t5t i then,
in the presence of a frequency fluctuating with periodt, the
pointszWk5@p(t i1kt),q(t i1kt)# give rise to thesamesolu-
tion from t>t i1kt (k51,2, . . . ). Inaddition, given an in-
variant I @p(t),q(t),t# such thatI (p,q,t)5I (p,q,t1t), the
pointszWk will all belong to a certain level curve ofI (p,q,t i).
We call the set of points

St@zW i #5$zWkPR2; zWk5@p~ t i1kt!,q~ t i1kt!#,

k50,1,2, . . . , zW05zW i% ~A1!

a one-period map~OPM!. In particular, if a point onSt@zW i #
generates a vanishing solution, then the same will do ev
point of St@zW i #. Thus, by definition, every setSt associated
with vanishing solutions is contained inSv . In other words,
we can locate at least some points ofSv by finding a single
point on it, following the solution at discrete time steps. Th
was done in Fig. 3~a! ~black points! starting from (pi5
20.0226392,qi50.0232694). As stated in Sec. VI, a suitab
starting point to plotSv can be found by looking at the
divergence of the correlation timeTpeak. However, the
analysis of several OPM’s suggested us an alternative wa
locate the points ofSv . We systematically observed the fo
02621
ys
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n-
a-
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lowing property: a OPM startingoutside~inside! Sv always
remains outside~inside!. In Fig. 3~b! we report plots corre-
sponding to inner and outer OPM’s, together with the n
merical location ofSv already shown in Fig. 3~a!. It is seen
that outer OPM’s always fall on~ideal! closed patterns, sur
roundingSv . At high energies these patterns have a quas
liptical shape, typical of the level curves of an autonomo
nonlinear oscillator~recall Sec. VII!. They approach the
8-like structure ofSv from outside, by inflecting themselve
more and more along theq̇ axis. The inner OPM’s form two
symmetrical patterns, inside each lobe ofSv . It is clear that
one may locateSv as the border line separating one-patte
~outer! OPM’s from two-pattern~inner! OPM’s. An interest-
ing limiting case of two-pattern OPM’s is indicated in Fig
3~b! by the two full circles on theq axis. Recalling definition
~A1!, one sees that these two points represent aperiodic
solution with period 2t. The existence of periodic solution
with periodKt (K51,2, . . . ) for aclass of nonlinear nonau
tonomous oscillators was proven by Dieckerhoff a
Zehnder@29#. In the OPM representation, these particu
BOWL solutions would appear as invariant sets ofK distinct
points.

Now let us come to analytical estimates ofSv based on
the expansion~10a!. Essentially, we make use of this seri
expansion in connection with identity~8!. At each order ina
one needs the lower-order termsqj (t) to calculate the result-
ing nested integrals. Then one choosesr 5q2 as a free pa-
rameter, and determinesq1 as a function ofq2 through Eq.
~8! truncated at some order. For istance, at second orde
find

q15aL1ur ug22r 1a2L2~g21!ur u2g24r , ~A2!

whereL1 comes from the insertion of the zero-order soluti
q2 f 2(t):

L15E
t i

`

dtuu2~ t !uge2gvt, ~A3!

and
hieu

or
.

L25E
t i

`

dt e2v(g22)tuu2~ t !ug22u1~ t !u2~ t !E
t

`

dt8uu2~ t8!uge2gvt8

1E
t i

`

dt e2gvtuu2~ t !ugE
t i

t

dt8uu2~ t8!ug22u1~ t8!u2~ t8!e2v(g22)t8, ~A4!

u2(t) being the oscillating part off 2(t). We have performed this calculation at the center of the first gap of the Mat
equation~20! ~as in Fig. 1! obtainingL153.52 andL250.466 (t i50). At this stage, the results can be plotted in (q̇i ,qi) space
on using the~nonsingular! linear transformation betweenq6 @Eq. ~6!# and the initial conditions. In Fig. 3 this was done f
g54 anda51. It should be stressed that Eq.~A2! reproduces onlyonebranch of the ‘‘8-like’’ continuous curves of Fig. 3
It is sufficient to time reverse Eqs.~8! and ~9! ~in the spirit of Secs. V and VIII! to obtain the specular equation (q̇i→2q̇i).
8-12
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